有限单元法的几个专题.ppt

上传人:牧羊曲112 文档编号:6227339 上传时间:2023-10-07 格式:PPT 页数:22 大小:335.50KB
返回 下载 相关 举报
有限单元法的几个专题.ppt_第1页
第1页 / 共22页
有限单元法的几个专题.ppt_第2页
第2页 / 共22页
有限单元法的几个专题.ppt_第3页
第3页 / 共22页
有限单元法的几个专题.ppt_第4页
第4页 / 共22页
有限单元法的几个专题.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《有限单元法的几个专题.ppt》由会员分享,可在线阅读,更多相关《有限单元法的几个专题.ppt(22页珍藏版)》请在三一办公上搜索。

1、6.1 动力学问题的有限元法 6.2 非线性问题的有限元法,6.1 动力学问题的有限元法,动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题有两类:,一类是在运动状态下工作的机械或结构:,另一类是承受动力载荷作用的工程结构:,这些结构的破裂、倾覆和垮塌将给人民的生命财产造成巨大的损失。,如何保证它们运行的平稳性及结构的安全性,正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。,高速电机、汽轮机、离心压缩机,内燃机、冲压机床,高速车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。,承受强风、水流、地震以及波浪等各种动力载荷的作用

2、的高层建筑、桥梁、核电站的安全壳海洋石油平台等。,动力学研究的另一重要领域是波在介质中的传播问题。,6.1.1 弹性动力学问题的基本方程:,平衡方程(or运动方程):,几何方程:,物理方程:,边界条件:,初始条件:,力边界:,位移边界:,式中是质量密度,是阻尼系数。,平衡方程中出现惯性力和阻尼力这是弹性动力学和静力学相区别的基本特点之一。,位移、应变、应力也是时间的函数。也正因为如此,动力学问题的定解条件中还应包括初始条件。,6.1 动力学问题的有限元法,6.1.2 有限元法求解动力问题的基本步骤:,6.1 动力学问题的有限元法,在动力分析中引入了时间坐标。在有限元分析中一般采用部分离散的方法

3、,即只对空间域进行离散,这样一来,此步骤和静力分析相同。,2、构造插值函数,1、连续区域的离散化,此时,结点位移是时间的函数。,6.1.2 有限元法求解动力问题的基本步骤:,6.1 动力学问题的有限元法,3、形成系统的求解方程,平衡方程及力的边界条件的等效积分形式为:,分部积分,并代入物理方程,,再将离散后的位移代入上式,注意到结点位移变分的任意性,(请同学们课后自己证明),最终得到系统的求解方程:,如果忽略阻尼的影响,可简化为:,系统的求解方程为:,M是系统的质量矩阵、C 是系统的阻尼矩阵、K是系统的刚度矩阵、Q(t)是系统的结点载荷向量,分别由各自的单元矩阵和向量集成。,6.1.2 有限元

4、法求解动力问题的基本步骤:,6.1 动力学问题的有限元法,4、求解运动方程,运动方程的求解方法是本章着重讨论的内容。,5、计算结构的应变和应力,6.1.2 有限元法求解动力问题的基本步骤:,6.1 动力学问题的有限元法,从以上各步骤可以看出:,B、最后得到的求解方程不是代数方程组,而是常微分方程组。其他计算步骤和静力分析是完全相同的。,A、和静力分析相比较,在动力分析中由于惯性力和阻尼力出现在平衡方程中,因此引入了质量矩阵和阻尼矩阵。,6.1.3 单元质量矩阵,6.1 动力学问题的有限元法,一致(协调)质量矩阵:,质量矩阵的导出和导出刚度矩阵所根据的原理及所采用位移插值函数是一致的,同时质量分

5、布也是按照实际分布情况考虑的。,在有限元法中还经常采用所谓集中或团聚)质量矩阵。它假定单元的质量集中在结点上,这样得到的质量矩阵是对角线矩阵。,集中质量矩阵:,以3结点三角形单元为例:,其中W=tA是单元的质量,t是单元的厚度。,6.1.4 单元阻尼矩阵,6.1 动力学问题的有限元法,1、基于和协调质量矩阵的同样理由称为协调阻尼矩阵。它是假定阻尼力正比于质点运动速度的结果,通常均将介质阻尼简化为这种情况。这时单元阻尼矩阵比例于单元质量矩阵。,2、除此而外,还有比例于应变速度的阻尼,例如由于材料内摩擦引起的结构阻尼通常可简化为这种情况,这时单元阻尼矩阵可表示成:,此单元阻尼矩阵比例于单元刚度矩阵

6、。,6.1.5 直接积分法:,6.1 动力学问题的有限元法,常微分方程组的解法,原则上可利用求解常微分方程组的常用方法(例如Runge-K utter方法)求解。,但是在有限元动力分析中,因为矩阵阶数很高,用这些常用算法一般是不经济的,所以只对少数有效的方法有兴趣。这些方法可以分为两类:直接积分法和振型叠加法。,直接积分是指在积分运动方程之前不进行方程形式的变换,而直接进行逐步数值积分。,通常的直接积分法是基于两个概念:一、将在求解域0tT内的任何时刻t 都应满足运动方程的要求,代之以仅在一定条件下近似地满足运动方程,例如可以仅在相隔Ot的离散的时间点满足运动方程。二、在一定数目的t区域内,假

7、设位移、速度、加速度的函数形式。,在以下的讨论中,假定时间t=0的位移、速度、加速度已知。并假定时间求解域0-T被等分为n个时间间隔t=T/n,在讨论具体算法时,假定0,t,2t,t时刻的解已经求得,目的在于计算t+t时刻的解。,6.1.5 直接积分法:,6.1 动力学问题的有限元法,A、中心差分法:,加速度和速度可以用位移表示为:,于是,时间t+t的位移解答可由时间t的运动方程建立,即:,时间t的运动方程成立,即:,6.1.5 直接积分法:,6.1 动力学问题的有限元法,B、NEWMARK法:,C、WILSON-法:,(略,祥见结构动力学),其中是n阶向量,是向量振动的频率,t是时间变量,t

8、0是由初始条件确定的时间常数。,6.1.6 振型叠加法:,6.1 动力学问题的有限元法,1、求解系统的固有频率和固有振型,不考虑阻尼影响的系统自由振动方程是,它的解可以假设为以下形式,将假设解代入上式,就得到一个广义特征值问题:,(略,祥见振动力学和结构动力学),6.1.6 振型叠加法:,6.1 动力学问题的有限元法,求解以上方程可以确定和,结果得到n个特征解(1,1),(2,2),(3,3),(4,4),其中特征值代表系统的n个固有频率,特征向量代表系统的n个固有振型。,由于固有振型对于矩阵M是正交的,6.2 非线性问题的有限元法,以前讨论的均是线性问题。线弹性力学基本方程的特点是:,1.几

9、何方程(应变和位移的关系)是线性的。,但是在很多重要的实际问题中。上述线性关系不能保持。,2.物理方程(应力和应变的关系)是线性的。,3.平衡方程也是线性的。,6.2.0 非线性问题,6.2 非线性问题的有限元法,例如:当外载荷到达一定数值时某些部位首先进入塑性,产生了不可恢复的变形,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。,又如:长期处于高温条件下工作的结构将发生蠕变变形,即在载荷或应力保持不变的情况下,变形或应变仍随着时间的进展而继续增长。,工程实际中还存在另一类所谓几何非线性问题:,上述现象,都不是线弹性的物理方程所能描述的,,属于材料非线性范畴内所

10、要研究的问题。,例如板壳的大挠度问题,材料锻压成型过程的大应变问题等,这时需要采用非线性的应变和位移关系,平衡方程也必须建立于变形后的状态以考虑变形对平衡的影响。,6.2.0 非线性问题,6.2 非线性问题的有限元法,6.2.1 非线性问题有限单元法的求解方程:,无论物理非线性还是几何非线性,最后都归结为求解非线性方程组:,1、如果材料是非线性的,则弹性矩阵D是非线性的,可写成D=D(a),那么K=K(a)同样是非线性的,这种非线性称为物理非线性。,2、如果材料是线性的,但是应变位移矩阵B与节点位移a有关,即B=B(a),是非线性的,那么K=K(a)同样是非线性的,这种非线性称为几何非线性。,

11、6.2 非线性问题的有限元法,6.2.1 非线性问题有限单元法的求解方程:,对于线性方程组,6.2 非线性问题的有限元法,非线性方程组解答的一些常用方法:,但对于非线性方程组,以下将阐述借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。,由于K是常数矩阵,可以没有困难地直接求解,,由于K依赖于基本未知量a。本身则不可能直接求解。,一、直接迭代法,6.2 非线性问题的有限元法,非线性方程组解答的一些常用方法:,2、初始刚度法,1、割线刚度法,二、Newton-Raphson方法,6.2 非线性问题的有限元法,非线性方程组解答的一些常用方法:,1、Newton-Raphson方法,2、修正的Newton-Raphson方法,三、增量载荷法,6.2 非线性问题的有限元法,非线性方程组解答的一些常用方法:,增量载荷法是将作用于结构上的全部载荷分成若干步加到结构上,,总的来说,非线性强的载荷步可以小一点,否则可大一点。,每步载荷的大小是由方程的非线性程度而定,,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号