《土木工程制图第三章点,直线和平面的投影.ppt》由会员分享,可在线阅读,更多相关《土木工程制图第三章点,直线和平面的投影.ppt(77页珍藏版)》请在三一办公上搜索。
1、第3章 点、直线和平面的投影,教学提示:任何形体,不论其复杂程度如 何,都可以看成由空间几何元素点、线、面所组成。本章主要研究点、各种位置直线、各种位置平面的投影规律和图示方法,为正确绘制和阅读形体的投影图打基础。学习要求:掌握点、直线和平面的投影规律和方法,在学习的过程中要注意将所学内容与实际工程结合起来,以加强空间想象能力。,3.1 点的投影,如右图所示,一个形体由多个侧面围成,各侧面相交于多条侧棱,各侧棱相交于多个顶点A、B、CJ 等。如果画出各点的投影,再把各点的投影一一连接,就可以作出一个形体的投影。点是形体的最基本的元素。点的投影规律是点、线、面投影的基础。,一、点的单面投影,1)
2、过空间点A的投射线与投影面P的交点即为点A在P面 上的投影。2)点在一个投影面上的投影不能确定点的空间位置。,二.点的两面投影,点的两面投影规律:1)点的水平投影和正面投影之间的连系线垂直于OX轴。aaOX。2)点的水平投影到OX轴的距离等于空间点A到V面的距离aaX=Aa。3)点的正面投影到OX轴的距离等于空间点A到H面的距离aaX=Aa。,空间点用大写字母表示,点的投影用小写字母表示。,三.点在三面投影体系中的投影,点的三面投影规律:(1)投影之间连系线垂直于投影轴,aaOX,aaOZ。(2)点的H面投影a到OX的距离等于点的W面投影a到OZ轴的距离,aaX=aaZ。,(a)空间状况(b)
3、展开图(c)投影图,例1:已知点的两个投影,求第三投影。,a,a,ax,az,az,解法一:,通过作45线使aaz=aax,解法二:,用圆规直接量取aaz=aax,例2:已知点的两面投影,求第三 投影,如下图所示。,(a)已知(b)作图,分析:因为根据点的任意两面投影可以求出第三投影。,四、特殊位置的点,注意:A点的侧面投影a应在OYW轴上,C点的水平投影应在OYH轴上。,五、点的坐标,已知点的3个坐标,可作出该点的三面投影,已知点的三面投影,可以量出该点的3个坐标。,例3:已知点A(18,15,20),作点A的三面投影图和立体图,如下图所示。,分析:由于已知点的3个坐标,可作出该点的三面投影
4、图,并且点的空间位置可用坐标来确定。,方法一 方法二 立体图,六、空间两点的相对位置,1.相对位置的判断 两点的相对位置指两点在空间的上下、前后、左右位置关系。,X坐标值大的点在左,小的在右。Y坐标值大的点在前,小的在后。Z坐标值大的点在上,小的在下。,。,A在B的左、前、下方,作图步骤:,1)在a左方12 mm,上方8 mm 处确定b;2)作bbOX 轴,且在a 前10 mm 处确定b;3)按投影关系求得b。,ay,ay,Z,a,a,ax,az,X,YH,YW,O,a,例4:如图,已知点A 的三投影,另一点B在点A 上方8 mm,左方12 mm,前方10 mm处,求点B 的三个投影。,空间两
5、点在某一投影面上的投影重合为一点时,则称此两点为该投影面的重影点。,A、C为H面的重影点,a,a,c,被挡住的投影加(),(),a c,2.重影点,H面重影点 V面重影点 W面重影点,重影点,例5:已知形体的立体图及投影图,试在投影图 上标记形体上的重影点的投影,如下图所示。,一般情况下,直线的投影仍为直线。两点确定一条直线,将直线上两点的同名投影用直线连接起来,就得到直线的三个投影。,一、直线的投影,X,Z,YH,YW,o,直线的投影规定用粗实线绘制。,1.直线投影的形成,3.2 直线的投影,直线垂直于投影面投影重合为一点 积聚性,直线平行于投影面投影反映线段实长 ab=AB,直线倾斜于投影
6、面投影比空间线段短 ab=ABcos,直线与投影面的相对位置,投影面平行线,投影面垂直线,正平线(平行于面),侧平线(平行于面),水平线(平行于面),正垂线(垂直于面),侧垂线(垂直于面),铅垂线(垂直于面),一般位置直线,统称特殊位置直线,一、各种位置直线投影,1.投影面平行线,(1)投影面平行线是指在空间与一个投影面平行同时与另外两个投影面倾斜的直线。(2)投影面平行线分为水平线、正平线、侧平线。水平线与H面平行同时与V面、W面倾斜。正平线与V面平行同时与H面、W面倾斜。侧平线与W面平行同时与H面、V面倾斜。(3)投影面平行线的投影特点为:在它所平行的投影面上的投影反应其实长并且反映与另外
7、两个投影面的倾角。,投影面平行线,(a)水平线(b)正平线(c)侧平线,Z,YW,水平线,YH,1)在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面的真实倾角。2)另两个投影面上的投影平行于相应的投影轴。,侧平线,正平线,投 影 特 性,与H面的夹角:与V面的夹角:与W面的夹角:,投影面平行线投影特性,水平线 正平线 侧平线,投影面平行线在形体投影图和立体图中的位置,2.投影面垂直线,(1)投影面垂直线是指在空间与一个投影面垂 直,同时与另外两个投影面平行的直线。(2)投影面垂直线分为铅垂线、正垂线、侧垂线。铅垂线与H面垂直同时与V面、W面平行。正垂线与V面垂直同时与H面、W面平行
8、。侧垂线与W面垂直同时与H面、V面平行。(3)投影面垂直线的投影特点为:在它所垂直的投影面上的投影积聚为一点,另外两个投影垂直于相应的投影轴,如图3.15所示。,投影面垂直线,(a)水平线(b)正平线(c)侧平线,(1)在其垂直的投影面上,投影有积聚性。(2)另外两个投影,反映线段实长,且垂直于相应的投影轴。,投 影 特 性,投影面垂直线投影特性,铅垂线 正垂线 侧垂线,投影面垂直线在形体投影图和立体图中的位置,投影特性:,三个投影都不反映空间线段的实长及与三个投影面夹角的真实大小,且与各投影轴都倾斜。,返回,x,yH,yw,z,3.一般位置直线,x,z,y,A,B,b,b,a,a,=ab,B
9、0,Za,BB。=Bb-bB。,实长,=Zb-Za=Z,Za,直角三角形法求一般位置直线的实长和倾角,在直角三角形中,O,X,a,b,a,b,B。,Z,Z,实长,O,X,a,b,Za,Zb,Z,求直线段AB的实长和倾角,1)H面投影长、Z坐标差、实长。2)V面投影长、Y坐标差、实长。3)W面投影长、X坐标差、实长。,1、直角三角形法的四要素:投影长、坐标差、实长和倾角,2、应用总结:不同条件的四要素,总结,直线对投影面的倾角、,直角三角形法求直线段的实长及倾角,已知 作图,例1:用直角三角形法求、,o,a,b,a,x,例2:已知直线AB的投影ab和a及 AB=35mm,B点在A点的前方,求b。
10、,分析:由点的投影规律可知,b 必定位于b正下方的H投影面上,只要作出A、B 两点的Y 坐标差,即可以确定b。,o,a,b,a,x,作图过程及结果,二、直线上的点,点在直线上,则点的投影必在直线的同名投影上且符合点的投影规律。直线上两线段长度之比等于它们的同名投影长度之比,即 AC:CB=ac:cb=ac:cb=ac:cb。,点C不在直线AB上,点C在直线AB上,返回,x,x,o,o,例3:判断点C是否在线段AB上。,Z,a,b,因c不在a b上,故点C不在AB上。,应用等比定理,a,b,c,a,b,c,另一判断法?,X,o,YH,YW,例4:判断点C 是否在线段AB上。,例3.8:判断点K是
11、否在线段AB上,三、两直线的相对位置关系,平行相交交叉垂直,空间两直线的相对位置,厂房形体,分为,1.平行两直线,投影特性:,空间两直线平行则其各同面投影必相互平行;各同名投影的长度之比相等;各同名投影的指向相同。,ABCD,则abcd、abcd、abcd ABCD=abcd=abcd=abcd,若两直线的三组同面投影都平行:则两直线在空间平行。若两一般位置直线:任意两组同面投影平行,则可判断两直线在空间平行。若两直线同时平行于某一投影面:则需通过两直线在该投影面上的投影来判断;或者通过定比性和指向来判断。,判断方法:,对于一般位置直线,只要有两个同面投影互相平行,空间两直线就平行。,AB/C
12、D,例5:判断图中两条直线是否平行,b,d,c,a,c,b,a,d,d,b,a,c,对于特殊位置直线,只有两个同面投影互相平行,空间直线不一定平行。,求出W面投影后可知:AB与CD不平行。,X,o,YH,YW,例6:判断图中两条直线是否平行。,投影特点:,若空间两直线相交,则其同面投影必相交,且交点的投影必符合空间一点的投影规律。,交点是两直线的共有点,2.相交两直线,判断方法:,若两直线的三组同面投影都相交,且交点符合点的投影规律,则两直线在空间相交;两一般位置直线,任意两组同面投影相交,且交点符合点的投影规律,则可判断两直线在空间相交;两直线中其中之一平行于某一投影面,则需作出两直线在该投
13、影面上的投影来判断;或者通过定比性来判断。,例7:过C点作水平线CD与AB相交。,先作正面投影,o,x,思考:如果给出CD的长度,解题过程有何变化?提示:H面投影反映实长。,分析:因两直线中CD平行于W投影面,则需作 出两直线在W投影面上的投影来判断;或者通过定比性来判断。,例3.10:判断两直线AB与CD是否相交。,1(2),3(4),两直线交叉,投影特性:,、是面的重影点,、是H面的重影点。,交叉两直线既不平行又不相交。其投影既不符合平行两直线的投影特性,也不符合相交 两直线的投影特性。,答案:交叉,判断下列两直线的位置关系:,直线在H面上投影互相垂直,两垂直相交直线之一平行于某投影面,另
14、一边不平行也不垂直于该投影面时,则在该投影面上的投影是直角。,4.垂直两直线,反之,相交两直线之一是某投影面的平行线,且两直线在该投影面上的同名投影互相垂直,则两直线在空间互相垂直。,当空间交叉垂直两直线之一平行于某投影面,另一直线不平行也不垂直于该投影面时,则这两直线在该投影面上的投影也垂直。,直线在H面上投影互相垂直,反之,交叉两直线之一是某投影面平行线,且两直线在该投影面上的同名投影互相垂直,则在空间两直线互相交叉垂直。,c,a,b,d,a,c,b,d,分析:1、点到直线的距离即 点到垂足的距离的实长 2、直线AB是水平线,例3.11:求点C到直线AB的距离,例3.12补全矩形ABCD的
15、两面投影。,c,a,c,d,一、平面的表示法,不在同一直线上的三个点,直线及线外一点,两平行直线,两相交直线,平面图形,x,x,x,x,x,o,o,o,o,o,3.4 平面的投影,实形性,类似性,积聚性,平面对一个投影面的投影特性,二、各种位置平面的投影,投影面垂直面,投影面平行面,一般位置平面,平面对于三投影面的位置可分为三类:,各种位置平面,(1)投影面平行面是指在空间与一个投影面平行同时与另外两个投影面垂直的平面。(2)投影面平行面分为水平面、正平面、侧平面。水平面与H面平行同时与V面、W面垂直。正平面与V面平行同时与H面、W面垂直。侧平面与W面平行同时与H面、V面垂直。(3)投影面平行
16、面的投影特点为:在它所平行的 投影面上的投影反应其实形,另外两个投影积聚成直线并平行于相应的投影轴。,1投影面的平行面,1、投影面的平行面,水平面 正平面 侧平面,投影面平行面在形体投影图和立体图中的位置,2.投影面的垂直面,(1)投影面垂直面是指在空间与一个投影面垂直同 时与另外两个投影面倾斜的平面。(2)投影面垂直面分为铅垂面、正垂面、侧垂面。铅垂面与H面垂直同时与V面、W面倾斜。正垂面与V面垂直同时与H面、W面倾斜。侧垂面与W面垂直同时与H面、V面倾斜。(3)投影面垂直面的投影特点为:在它所垂直的投影面上的投影积聚为直线且反映平面与另外两个投影面的倾角。,铅垂面 正垂面 侧垂面,2.投影
17、面的垂直面,投影面垂直面在形体投影图和立体图中的位置,3.一般位置平面,一般位置平面在空间与三个投影面都倾斜,它的三面投影都没有积聚性,也不反映平面的实形及与各投影面的倾角的大小。,三、平面上的点和直线,1平面上的点 一个点如果在一个平面上,它一定在这个平面的一根直线上。如右图所示的E点,由于它在平面SBC的一根直线DC上,所以它必然在平面SBC上。,2.平面上的直线,一直线如果通过平面上两个点或者通过平面上一个点且平行于平面上的一条直线,则该直线在该平面上。如右图所示的直线 DC通过平面SBC上的点D、C,则DC在平面SBC上;直线DF通过平面上点D且平行于平面上的一条直线BC,则DF在平面
18、SBC上。,利用平面的积聚性求解,通过在面内作辅助线求解,x,x,例8:已知K点在平面ABC上,求K点的水平投影。,平面上的点,a,b,c,b,c,a,d,n,m,例9:已知平面由直线AB、AC所确定,试 在平面内任作一条直线。,解法一,解法二,有无数解。,x,x,o,o,平面上直线,例2:在平面ABC内作一条水平线,使其到 H面的距 离为10mm。,n,m,n,m,唯一解!,o,x,3平面上的投影面平行线,平面上的投影面平行线有以下3种。平面上平行于H面的直线称为平面上的水平线。平面上平行于V面的直线称为平面上的正平线。平面上平行于W面的直线称为平面上的侧平线 常用的是平面上的水平线和平面上
19、的正平线。平面上的投影面平行线既符合直线在平面上的几何条件,又具有投影面平行线的投影特点,因此它的投影特性具有二重性。,(a)已知(b)在平面上作水平线(c)在平面上作正平线 图3.43 在平面上作水平线和正平线,【例3.16】过平面ABC上点C作平面ABC 内的水平线,如图3.44所示。,分析:平面上的投影面平行线既符合直线在平面上的几 何条件,又具有投影面平行线的投影特点。,4平面上的最大斜度线,平面上对投影面倾角最大的直线,称为平面的最大斜度线,它必垂直于平面内相应的投影面平行线。,【例3.17】求三角形ABC对H面和V面的倾角和,如图3.46(a)所示。,(a)已知(b)求作(c)求作 图3.46 求三角形ABC对H面和V面的倾角和,章 后 小 结,(1)任何形体都是由点、线、面组成的,本章内容主要讲述点、直线、平面的投影规律和特点,掌握本章内容能培养空间想象能力和空间思维能力。(2)理解并掌握各种位置直线和各种位置平面的投影特性且学会应用,学习这些线和面的投影是为后面的求解组合体和工程形体的投影图打基础的,而且最终为绘制和阅读施工图服务,学习时一定要把理论知识和实际工程结合起来。,