《微积分学的理论基础第二节数列的极限.ppt》由会员分享,可在线阅读,更多相关《微积分学的理论基础第二节数列的极限.ppt(51页珍藏版)》请在三一办公上搜索。
1、,Mathematics Laboratory,阮小娥博士,Sept.2008,数列极限的概念收敛数列的性质与极限运算法则数列收敛的判别准则,第一章 微积分的理论基础,第二节 数列的极限(2课时),1,作业:page34,A组9(1)(3),11(1)(2)(5)(7)(8)12(1),13(1).15.,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,(1)割圆术:,播放,刘徽,1、概念的引入,第一部分 数列极限的概念,2,正六边形的面积,正十二边形的面积,正 形的面积,3,(2)截丈问题:,“一尺之棰,日截其半,万世不竭”,战国庄子天下篇中,惠施说:,4,2、数列的
2、定义,例如,5,注意:,1.数列对应着数轴上一个点列.可看作一动点在数轴上依次取,2.数列是整标函数,6,播放,3、数列的极限,7,问题1:,当 无限增大时,是否无限接近于某一确定的数值?如果是,如何确定?,问题2:,“无限接近”意味着什么?如何用数学语言刻划它?,通过上面演示实验的观察:,8,9,定义:,记为,或,如果数列没有极限,就说数列是发散的.,注意:,10,几何解释:,其中,11,数列极限的定义未给出求极限的方法.,例1,证,所以,注意:,12,例2,证,所以,说明:常数列的极限等于同一常数.,小结:,用定义证数列极限存在时,关键是任意给定 寻找N,但不必要求最小的N.,13,例3,
3、证,14,例4,证,15,第二部分:收敛数列的性质 与极限运算法则,1.有界性,例如,有界,无界,16,定理1 收敛的数列必定有界.,证,由定义,注意:有界性是数列收敛的必要条件.,推论 无界数列必定发散.,17,2.唯一性,定理2 每个收敛的数列只有一个极限.,证,由定义,故收敛数列极限唯一.,18,例5,证,由定义,区间长度为1.,不可能同时位于长度为1的区间内.,19,定理3.有理运算法则:,(可推广到有限个数列的情形),推论:,20,定理4.保号性,并且,,若,反之,,若,定理5.保序性,设,21,定理6.夹逼性,设,例6,例7,例8,22,所以,所求极限为,分析:考虑利用夹逼性.构造
4、夹逼数列,例9,23,重要极限,(1)可以证明它是单调增的;,(2)可以证明它有上界3。,单调性:,定理7(单调有界准则),单调增(减)有上(下)界的数列必定收敛。,第三部分:数列收敛的判别准则,若以上不等式是严格成立的,则称该数列是严格单调增(减)的。,例10,24,子数列与数列极限的归并原理,子数列(子列),设 为一数列,由 中的无穷多项按照脚标由小到大排列所组成的一个数列称为数列 的一个子数列(子列)。,定理8(归并原理),记做:,主要利用它的逆否命题判断数列的发散性。,25,Cauchy收敛原理,定理9(Cauchy收敛原理),例11,26,例12,例13,思路分析,考虑利用单调有界准
5、则:讨论其单调性和有界性,又数列为正,0为它的一个下界;,所以,必有极限。,27,练 习 题,28,1、割圆术:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,刘徽,一、概念的引入,1、割圆术:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣
6、”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,1、割圆术:,刘徽,一、概念的引入,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,三、数列的极限,