《统计综合-数据处理与多指标评价方法.ppt》由会员分享,可在线阅读,更多相关《统计综合-数据处理与多指标评价方法.ppt(125页珍藏版)》请在三一办公上搜索。
1、第十三讲 统计综合,提纲,1.权重确定的一般方法,2.数据处理的一般方法,3.常用综合评价方法,一、权重确定的一般方法,专家咨询法排序法(Delphi法)头脑风暴法层次分析法(AHP法)秩和比法(RSR法)相关系数法主成分分析法(PCA法)因子分析法算术均数组合赋权法(均数法)(算术均数组合赋权法的权重为前 种方法所得权值的算术平均数)连乘累积组合赋权法(累积法)(连乘累积组合赋权法的权重为前 种方法所得权重的累积分数),1.权数的确定方法分类,按权数的表现形式分为:绝对数权数;比重权数。通常采用比重权数归一化权数。按确定权数的方法分为:主观赋权法;客观赋权法。,2.主观赋权法,主观赋权法德尔
2、菲法(专家法)实际上各个专家可以根据自己的理解选择不同的方法相邻指标比较法;(先按重要性将全部评价指标排序,再将相邻指标的重要性进行比较层次分析法()互反式两两比较构权法。,主观赋权法特点,权数的特性(指主观权数、人工权数)重要性权数是一种重要性程度的量化值。指对合成值的影响程度大小。重要性本身是个综合的概念,表现在多个方面,如可以是“价值判断取向”上的重要性,也可以是合成时“分辨能力(信息含量)高低”的重要性,或“可靠度大小”的重要性。模糊性重要性本身就是个模糊的概念;习惯取点值。人工性没有绝对的正确错误标准;只能尽可能选择相对科学合理的权数。主观性受评权者主观意识的影响,3.客观赋权法,客
3、观赋权法从指标的统计性质来考虑,它是由客观数据决定。客观定权法包括模糊定权法、秩和比法、熵权法和相关系数法等,(1)变异信息构权(离散/方差信息构权)指标的区分度越高,对排序的影响就越大。基于这种观点,以区分度(方差)信息量为权重。目前,主要有两种方法:a)根据标准差大小来确定权数直接将各评价指标的标准差(系数)向量进行归一化处理而得。b)主成分分析法(PC构权法)根据方差矩阵计算特征根及特征向量,并以特征向量为权重。但事实上这种权数与原始变量的方差并不成正比,所以,严格地说,它反映的是变量之间的相关信息,而非方差信息。方差信息构权最主要的问题方差信息是否真正全面反映了综合评价的价值。因此,有
4、人提出,应该将方差信息权与重要性权结合起来。,(2)相关信息构权复相关系数法每个被选指标,根据其余指标对它的复相关系数来确定权数。复相关系数大,权数是应该取大还是取小?相关系数总和法对其它指标的相关系数的总和,再作倒数处理并归一化(但对负相关的处理也有争议)。(3)熵信息构权熵有不同定义,相应有不同评价方法。它本质上仍然是离散程度大熵值小权大。只是定义了一个新的测度变异情况的指标(1熵值)。由此,任一相对变异指标都可用来定权。,4.合成赋权法,合成方法 由单项评价值计算综合评价值的方法。1、算术平均法(加法合成、加减法合成)2、几何平均法(乘法合成、乘除法合成)3.混合合成法,加权算术平均法的
5、主要特点(1)对于数据的要求最宽松,用于合成的某一指标数值可以为0、为负;(2)各指标可以相互补偿(等量补偿),即此升彼降,总的评价值不变;(3)突出了评价分数较大、权数较大者的作用,适用于主因素突出性的评价;(对较大数值的变动更为敏感)。,几何平均法的主要特点(1)对数据要求较高,指标数值不能为0、负数,(2)鼓励被评价对象在各方面全面发展,任一方也不能偏废。此合成方法督促“全面发展”,而不是靠重点倾斜的方法取胜;(3)乘除法容易拉开评价档次,对较小数值的变动更敏感。,二、数据处理的一般方法,1.数据类型的一致化处理方法,极大型:期望取值越大越好;极小型:期望取值越小越好;中间型:期望取值为
6、适当的中间值最好;区间型:期望取值落在某一个确定的区间 内为最好。,什么是一致化处理?为什么要一致化?,2.数据指标的无量纲化处理方法(标准化),(3)功效系数法:,(1)标准差法:,(2)极值差法:,3.模糊指标的量化处理方法,在实际中,很多问题都涉及到定性,或模糊指标的定量处理问题。诸如:教学质量、科研水平、工作政绩、人员素质、各种满意度、信誉、态度、意识、观念、能力等因素有关的政治、社会、人文等领域的问题。,如何对有关问题给出定量分析呢?,按国家的评价标准,评价因素一般分为五个等级,如A,B,C,D,E。如何将其量化?若A-,B+,C-,D+等又如何合理量化?根据实际问题,构造模糊隶属函
7、数的量化方法是一种可行有效的方法。,3.定性指标的量化处理方法,假设有多个评价人对某项因素评价为A,B,C,D,E共5个等级:v1,v2,v3,v4,v5。譬如:评价人对某事件“满意度”的评价可分为很满意,满意,较满意,不太满意,很不满意将其5个等级依次对应为5,4,3,2,1。这里为连续量化,取偏大型柯西分布和对数函数作为隶属函数:,根据这个规律,对于任何一个评价值,都可给出一个合适的量化值。据实际情况可构造其他的隶属函数。如取偏大型正态分布。,三、常用综合评价方法,(一)计分法(二)Topsis法(三)秩和比(RSR)法(四)层次分析(AHP)法(五)模糊综合评价方法(六)多元统计分析方法
8、(七)灰色系统评价方法,(一)计分法,1.综合计分法根据评价目的及评价对象的特征选定必要的评价指标逐个指标定出评价等级,每个等级的标准用分值表示以恰当的方式确定各评价指标的权数选定累计总分的方案以及综合评价等级的总分值范围,以此为准则,对评价对象进行分析和评价,以决定优劣取舍特点:简便易行,过于粗糙。,计分法具体做法:按各个评价指标的经济重要性确定标准得分全部指标的标准得分的总和=100,单项指标的标准得分就是该指标的最高分(满分,也就相当于权数);确定各指标的对比标准;按三档记分改善得满分,持平得一半的分,下降得零分。加总各评价指标的实际得分 特点:简便易行,过于粗糙。,2、排队计分法 将评
9、价单位的各项评价指标依优劣秩序排队,再将名次(位置)转化为单项评价值,最后由单项评价值计算各单位的综合评价值(总分)。,排队计分法的优缺点,优点:简便易行,勿须另寻比较标准;各单项评价值有统一的值域;适用范围广泛(可用于定序以上层次的数据)缺点:原始数据信息的损失较大。,(二)综合指数法,一个或一组变量对某特定变量值大小的相对数称指数,反映某一事物或现象动态变化的指数称个体指数,综合反映多种事物或现象动态平均变化程度的指数称总指数,综合指数编制总指数的基本计算形式,定量地对某现象进行综合评价的方法称综合指数法,Ki 为单项评价指数:综合评价指数公式为:,评价指数可以为正指标,也可以为逆指标。但
10、必须同向化。一般是把逆指标转化为正指标采用倒数法,此时,综合评价指数才是越大越好。,加权指数法,试比较三个地区的综合经济效益。,三个地区的综合经济效益指数分别为:,=110.31%,=116.67%,=99.11%,加权指数法的优缺点,主要优点:意义直观明晰;主要缺点:各单项评价值没有统一的值域,影响评价指标的评价值之间的可比性。,(三)最优值距离法,最优值距离法的特点,综合评价值为逆指标越小越好(与最优值越接近);各单项评价指标的值域统一在(0,100)之间。评价结果容易受极端值影响。,(四)功效系数法,依据多目标规划原理提出单项评价得分:综合评价得分:几何平均法算术平均法,功效系数法的优缺
11、点,优点:能够充分反映评价指标的原始信息;各单项指标的值域基本上在(60,100)之间;评价结果受极端值影响的程度比指数法和最优值距离法都较弱。缺点:必须事先确定两个参照系(对比标准满意值和不容许值)。,(五)熵权法,对指标值越大越好的指标有,对指标值越大越好的指标有,熵权法是一种可以用于多对象、多指标的综合评价方法,其评价结果主要依据客观资料,几乎不受主观因素的影响,可以在很大程度上避免人为因素的干扰。,当 时,熵的定义:,第 j 个指标的熵权定义为:,对象的空间距离为:,归一化,p=2 欧氏距离,p=1 海明距离,海明距离,欧氏距离,(六)其它综合评价方法的应用,多元统计方法主成分分析法、
12、因子分析法、聚类分析法模糊数学方法模糊综合评价(评判)神经网络方法灰色系统分析方法还可以是多种方法的结合如:模糊神经网络方法、模糊聚类方法多种方法的评价结果再综合,或者选择与其它评价结果相关程度最高的结果为最终选定的评价结果。,5.1 因子分析法,将反映不同侧面的许多指标综合成为少数几个主因子,最后计算出综合得分。基本思想:根据变量之间的相关性大小把变量分组,使得同一组内变量之间的相关程度较高,不同组的变量之间相关性较低,每组变量代表一个基本结构(这个基本结构称为主因子或公共因子)。从具有错综复杂的关系的众多经济现象中找出几个主因子,每一个因子代表经济变量之间相互依赖的一种经济作用,抓住这些主
13、因子就可以帮助我们对复杂的经济问题进行分析和解释。,5.2 主成分分析法,通过研究指标体系的内部结构关系从而将多个指标转化为互不相关的、包含原来指标的大部分信息的少数几个综合指标(主成分),以各主成分的方差贡献率对它们进行加权,计算出综合评价得分。它实质上是一种同度量化值的加权算术平均值,主成分中的系数就是其权数。主成分方法的优点:1)消除变量之间的相关性;2)减少工作量(评价方法模式化、降维的简化作用)3)权数的非人为性(非随意性)。,应用主成分方法必须注意几点,样本容量要足够大(只对少数单位或时间进行评价就不能用);若样本出现不正常现象或异常点(应该将之删除),也不适用;评价单位的多少及增
14、减,都可能改变权数,从而影响评价结论。,应用主成分方法注意几点(续),属于一种相对评价,而非绝对评价。评价标准与样本有关;评价结果是一个相对优劣顺序。如进行经济效益评价,它的评价结果不能说明经济效益的水平的具体差异大小。它是原始变量的一种线性关系,没有考虑非线性情况。只适合于定量变量,不适合于包含定性变量的情况;常见的误解:把几个主成分的累计方差贡献率当作评价的把我程度/反映实际情况的程度。,5.3 灰色系统理论的关联分析,确定比较系列(评价指标体系)和参考系列(最优最劣两组);计算被评价对象与参考系列的关联度和从属度 关联度被评价对象与参考系列在各指标点的关联度的加权平均数,从属度综合反映了
15、评价对象远离最差系列的程度和接近最优系列的程度。根据关联度和从属度进行排序。特点:点关联度是建立在评价数据极差的基础上,既考虑了评价对象和整体的关系,又考虑了各评价对象之间的相互关系。,5.4 模糊神经网络,神经网络起源于对人脑的功能和结构的模拟,是由大量简单的处理单元广泛连接组成的复杂网络,对于需要同时考虑诸多因素和研究模糊信息问题特别适用。BP网络单向传播的多层网络由输入层、输出层和中间隐含层三个神经层次构成的模型。先要提出一组训练样本(每个样本由输入样本和理想输出组成),训练过程技术通过计算输出值于期望值的误差,通过修改权值(权数),直至理想输出与实际输出一致为止。,(六)Topsis法
16、,TOPSIS(Technique for order preference by similarity to ideal solution)法,即逼近理想解排序法,意为与理想方案相似性的顺序选优技术,是系统工程中有限方案多目标决策分析的一种常用方法。它是基于归一化后的原始数据矩阵,找出有限方案中最优方案和最劣方案(分别用最优向量和最劣向量表示),然后分别计算诸评价对象与最优方案和最劣方案的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。,1.设有n个评价对象、m个评价指标,原始数据可写为矩阵X(Xij)nm,2.对高优、低优指标分别进行同向化、归一化变换,3.归一化得到
17、矩阵Z(Zij)nm,其各列最大、最小值构成的最优、最劣向量分别记为,Z(Zmax1 Zmax2 Zmaxm),Z(Zmin1 Zmin2 Zminm),4.第i个评价对象与最优、最劣方案的距离分别为,5.第i个评价对象与最优方案的接近程度Ci为,例 某施工企业20042008年7项指标的实际值,用Topsis法比较该企业这5年的工程安全质量,Topsis法举例,变换后,得到矩阵,对各项指标进行同向化、归一化变换,计算各列最大、最小值构成的最优、最劣向量分别为,Z(0.4833 0.4805 0.4634 0.8178 0.4776 0.4487 0.5612),Z(0.4142 0.4081
18、 0.4321 0.2024 0.3916 0.4455 0.3118),计算各年与最优、最劣向量的距离(以2004年为例),C10.2497/(0.62890.2497)0.2842,计算接近程度(以2004年为例),可以看出,2008年综合安全质量最好,其次为2005年,随后为2004年、2007年,2006年最差,(七)秩和比(RSR)法,是利用秩和比RSR(Rank-sum ratio)进行统计分析的一组方法。秩:等级 秩和:等级和RSR是一个内涵较为丰富的综合性指标,具有01连续变量的特征,它以非参数分析方法为基础,通过指标数(列)、分组数(行)作秩的转换,再运用参数分析的概念和方法
19、研究RSR的分布,解决多指标综合评价问题。,设有m个指标,对n组数据进行评价,形成n行m列的数据阵,则:其中Rij 为分别按列编秩后各行的秩次。最小RSR=1/n,最大RSR=1。,秩和比法分析的步骤:分别对要评价的各项指标进行编秩计算各指标的秩和比(RSR)确定RSR的分布求回归方程排序分档,例1:采用秩和比法对某施工技术人员的4项考核指标进行综合评价业务考试成绩(X1)操作考核结果(X2)工种内测评(X3)工作量考核(X4),第一步,分别对要评价的各项指标进行编秩,遇相等评分时,取平均等级。,第二步,计算各指标的秩和比(RSR),其中:m为指标个数,n为分组数,Ri为各指标的秩次,RSR值
20、即为多指标的平均秩次,其值越大越优,计算秩和比(RSR)值,第三步,确定RSR的分布RSR频数f累积频数 秩号范围 平均秩次 累积频率Y(概率单位)。,Y为RSR的累积频率对应的概率单位值,Y=u+5,u标准正态分布的上分位点,RSR值正态性检验:Z=0.4772,双侧检验P=0.9767,说明RSR值呈正态分布,第四步,求回归方程 RSR=A+BY经相关和回归分析,应变量RSR 与自变量概率单位Y之间具有线性相关(r=0.9528)线性回归方程为:F=59.078,P=0.0002说明所求线性回归方程有统计学意义,第五步,根据RSR值排序分档 最佳分类归档的涵义是各档方差一致,相差具有显著性
21、。最佳分档准则为每档至少2例,尽量多分几组。最佳分档步骤,首先进行方差一致性检验,在方差一致的前提下,再作统计检验,方差分析结果判断各类间是否具有统计学差异,然后利用多重比较检验各类间差异是否显著。如果各类间的方差不一致或各类间的差异未达显著,则需考虑重新分档。,将各施工技术人员考核指标合理分档,分差、良、优三档。,各施工技术人员考核指标排序与等级分布,经方差齐性检验X2=2.3006,P0.05,说明各档方差一致方差分析显示:F=22.9722,P=0.0030,说明各档间有显著差异两两比较,P0.05,说明各档彼此之间均有差异,达到了最佳分档。,常用分档数及对应概率单位,表1 六种设备的主
22、要评价指标,秩和比法例2,假设某企业生产时有六种设备选择方案,采用的评价指标有成本、功耗、转速和可靠性,基础资料见表1,问应作何种设备选择决策?,六种设备评价指标的秩,R S R分布,表16 临界值与相应的概率,表 六种设备的分档结果,层次分析法是一种以定性与定量相结合的、系统化、层次化分析问题的方法。AHP是将半定性、半定量问题转化为定量问题的一种行之有效的方法,使人们的思维过程层次化,通过逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供了较具说服力的定量依据。,(八)层次分析法,1、层次分析法基本步骤(1)建立层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次
23、单排序及一致性检验;(4)层次总排序及一致性检验。,例 某工厂有一笔企业留成利润要由厂领导决定如何使用。可供选择的方案有:给职工发奖金、扩建企业的福利设施(改善企业环境、改善食堂等)和引进新技术新设备。工厂领导希望知道按怎样的比例来使用这笔资金较为合理。,步1 建立层次结构模型,在用层次分析法研究问题时,首先要根据问题的因果关系并将这些关系分解成若干个层次。较简单的问题通常可分解为目标层(最高层)、准则层(中间层)和方案措施层(最低层)。分析研究要符合决策者要求和意图决策者的目的是合理利用企业的留成利润,而利润的利用是否合理,决策者的主要标准为:(1)是否有利于调动企业职工的积极性,(2)是否
24、有利于提高企业的生产能力,(3)是否有利于改善职工的工作、生活环境。分析者可以提出自己的看法,但标准的最终确定将由决策者决定。,根据决策者的意图,可以建立起本问题的层次结构模型如图8.7所示。,图中的连线反映了因素间存在的关联关系,哪些因素存在关联关系也应由决策者决定。,对于因果关系较为复杂的问题也可以引进更多的层次。例如,在选购电冰箱时,如以质量、外观、价格、品牌及信誉等为准则,也许在衡量质量优劣时又可分出若干个不同的子准则,如制冷性能、结霜情况、耗电量大小等等。,建立层次结构模型是进行层次分析的基础,它将思维过程结构化、层次化,为进一步分析研究创造了条件。,步2 构造判断矩阵 层次结构反映
25、了因素之间的关系,例如图中目标层利润利用是否合理可由准则层中的各准则反映出来。但准则层中的各准则在目标衡量中所占的比重(权值)并不一定相同,在决策者的心目中,它们各占有一定的比例。怎样来确定合理的权值?,Saaty等人建议可以采取对因子进行两两比较建立成对比较矩阵的办法。即每次取两个因子xi和xj,以aij表示xi和xj对Z的影响大小之比,全部比较结果用矩阵A=(aij)nn表示,称A为ZX之间的成对比较判断矩阵(简称判断矩阵)。容易看出,若xi和xj对Z的影响之比为aij,则xj和xi对Z的影响之比应为:,定义:若矩阵A=(aij)nn满足,显然判断矩阵是正互反矩阵。,从心理学观点来看,分级
26、太多会超越人们的判断能力,既增加了作判断的难度,又容易因此而提供虚假数据。Saaty等人还用实验方法比较了在各种不同标度下人们判断结果的正确性,实验结果也表明,采用19标度最为合适。,如果在构造成对比较判断矩阵时,确实感到仅用19及其倒数还不够理想时,可以根据情况再采用因子分解聚类的方法,先比较类,再比较每一类中的元素。,关于如何确定aij的值,Saaty等建议引用数字19及其倒数作为标度。他们认为,人们在成对比较差别时,用5种判断级较为合适。即使用相等、较强、强、很强、绝对地强表示差别程度,aij相应地取1,3,5,7和9。在成对事物的差别介于两者之间难以定夺时,aij可分别取值2、4、6、
27、8。,步3 层次单排序及一致性检验 上述构造成对比较判断矩阵的办法虽能减少其他因素的干扰影响,较客观地反映出一对因子影响力的差别。但综合全部比较结果时,其中难免包含一定程度的非一致性。如果比较结果是前后完全一致的,则矩阵A的元素还应当满足:满足该关系式的正互反矩阵称为一致矩阵。,定理 若A为一致矩阵,则,(1)A必为正互反矩阵。,(2)A的转置矩阵AT也是一致矩阵。,(3)A的任意两行成比例,比例因子(即wi/wj)大于零,从而rank(A)=1(同样,A的任意两列也成比例)。,(4)A的最大特征根max=n,其中n为矩阵A的阶。A的其余特征根均为零。,(5)若A的最大特征根max对应的特征向
28、量为W=(w1,wn)I,则aij=wi/wj,i,j=1,2,n。,定理 正互反矩阵A的最大特征根max必为正实数,其对应特征向量的所有分量均为正实数。A的其余特征根的模均严格小于max。(证明从略),定理 n阶正互反矩阵A为一致矩阵当且仅当其最大特征根 max=n,且当正互反矩阵A非一致时,必有maxn。,根据定理,我们可以由max是否等于n来检验判断矩阵A是否为一致矩阵。由于特征根连续地依赖于aij,故max比n大得越多,A的非一致性程度也就越为严重,max对应的标准化特征向量也就越不能真实地反映出X=x1,xn在对因素Z的影响中所占的比重。因此,对决策者提供的判断矩阵有必要作一次一致性
29、检验,以决定是否能接受它。,为确定多大程度的非一致性是可以允忍的,Saaty等人采用了如下办法:,(1)求出,称CI为A的一致性指标。,容易看出,当且仅当A为一致矩阵时,CI=0。CI的值越大,A的非一致性越严重。利用线性代数知识可以证明,A的n个特征根之和等于其对角线元素之和(即n)故CI事实上是A的除max以外其余n1个特征根的平均值的绝对值。若A是一致矩阵,其余n1个特征根均为零,故CI=0;否则,CI0,其值随A非一致性程度的加重而连续地增大。当CI略大于零时(对应地,max稍大于n),A具有较为满意的一致性;否则,A的一致性就较差。,(2)上面定义的CI值虽然能反映出非一致性的严重程
30、度,但仍未能指明该非一致性是否应当被认为是可以允许的。事实上,我们还需要一个度量标准。为此,Saaty等人又研究了他们认为最不一致的矩阵用从19及其倒数中随机抽取的数字构造的正互反矩阵,取充分大的子样,求得最大特征根的平均值,并定义,称RI为平均随机一致性指标。,对n=1,11,,Saaty给出了RI的值,如表所示。,(3)将CI与RI作比较,定义,称CR随机一致性比率。经大量实例比较,Saaty认为,在CR0.10时可以认为判断矩阵具有较为满意的一致性,否则就应当重新调整判断矩阵,直至具有满意的一致性为止。综上所述,在步3中应先求出A的最大特征根max及max对应的特征向量W=(w1,wn)
31、T,进行标准化,使得。再对A作一致性检验:计算,查表得到对应于n的RI值,求,若CR0.1,则一致性较为满意,以 i作为因子xi在上层因子Z中所具有的权值。否则必需重新作比较,修正A中的元素。只有在一致性较为满意时,W的分量才可用作层次单排序的权重。,现对本节例(即合理利用利润问题)进行层次单排序。,为求出C1、C2、C3在目标层A中所占的权值,构造OC层的成对比较矩阵,设构造出的成对比较判断知阵,A=,于是经计算,A的最大特征根max=3.038,CI=0.019,查表得RI=0.58,故CR=0.033。因CR0.1,接受矩阵A,求出A对应于max的标准化特征向量W=(0.105,0.63
32、7,0.258)T,以W的分量作为C1、C2、C3在目标O中所占的权重。,类似求措施层中的P1、P2在C1中的权值,P2、P3在 C2中的权值及P1、P2在C1中的权值:,max=2,CI=CR=0W=(0.75,0.25)T,max=2,CI=CR=0W=(0.167,0.833)T,max=2,CI=CR=0W=(0.66,0.333)T,经层次单排序,得到图。,设上一层次(A层)包含A1,Am共m个因素,它们的层次总排序权值分别为a1,am。又设其后的下一层次(B层)包含n个因素B1,Bn,它们关于Aj的层次单排序权值分别为b1j,bnj(当Bi与Aj无关联系时,bij=0)。现求B层中
33、各因素关于总目标的权值,即求B层各因素的层次总排序权值b1,bn,计算按表11所示方式进行,即,i=1,n。,表11,步4 层次总排序及一致性检验,最后,在步骤(4)中将由最高层到最低层,逐层计算各层次中的诸因素关于总目标(最高层)的相对重要性权值。,例如,对于前面考察的工厂合理利用留成利润的例子,措施层层次单排序权值的计算如表所示。,对层次总排序也需作一致性检验,检验仍象层次总排序那样由高层到低层逐层进行。这是因为虽然各层次均已经过层次单排序的一致性检验,各成对比较判断矩阵都已具有较为满意的一致性。但当综合考察时,各层次的非一致性仍有可能积累起来,引起最终分析结果较严重的非一致性。,设B层中
34、与Aj相关的因素的成对比较判断矩阵在单排序中经一致性检验,求得单排序一致性指标为CI(j),(j=1,m),相应的平均随机一致性指标为RI(j)(CI(j)、RI(j)已在层次单排序时求得),则B层总排序随机一致性比率为,CR=,当CR0.10 时,认为层次总排序结果具有较满意的一致性并接受该分析结果。,对于表7.11中的P层总排序,由于CP层间的三个判断矩阵的一致性指标(即CI(j),j=1,2,3)均为0,故P层总排序的随机一致性比率CR=0,接受层次分析结果,将留成利润的25.1%用于发奖金,21.8%用于扩建福利事业,余下的53.1%用于引进新技术新设备。,2、最大特征根及对应特征向量
35、的近似计算法,众所周知,求矩阵A的特征根与特征向量在n较大时是非常麻烦的,需要求解高次代数方程及高阶线性方程组。由于判断矩阵中aij的给出方法是比较粗糙的,它只是决策者主观看法在一定精度内的定量化反映,也就是说,建模本身存在着较大的模型误差。因而,在计算特征根和特征向量时,没有必要化费太多的时间和精力去求A的特征根与特征向量的精确值。事实上,在应用层次分析法决策时,这些量的计算通常采用较为简便的近似方法。,1、方根法,在应用小型计算器求判断矩阵A的最大特征根与对应特征向量时可采用方根法。其计算步骤如下:,(1)求判断矩阵每行元素的乘积,,i=1,2,n,(2)求Mi的n次方根,(3)对 进行标
36、准化,求特征向量各分量的近似值。,(4)求A的最大特征根的近似值,从(7.6)式中不难看出,当A为一致矩阵时,由A中各行乘积的n次方根组成的向量与A的特征向量成比例。因而当A的非一致性不太严重时,方根法求得的Wi(i=1,n)可近似用于层次单排序的权值。,对前面例子中的OC判断阵,有,求,得,2、幂法,计算步骤:,(步1)任取一标准化向量W(0),指定一精度要求0,k=0。,(步2)迭代计算,k=0,1,。,若,i=1,n,则取W=为A的对应于max的特征向量的近似,否则转步2。,(步3)将 标准化,即求 其中 为 的第i个分量。,(步4)求max的近似值,对前面例子中的OC判断矩阵,若取,=
37、0.001,利用幂法求近似特征向量如下:,(第一次迭代)(0)=(0.511,3,1.444)T,=4.955,求得W(1)=(0.103,0.605,2.91)T,(第二次迭代)(2)=(0.321,1.993,0.802)T,=3.116,求得W(2)=(0.103,0.639,0.257)T,(第三次迭代)(3)=(0.316,1.925,0.779)T,=3.02,求得W(3)=(0.105,0.637,0.258)T,(第四次迭代)(4)=(0.318,1.936,0.785)T,=3.04,求得W(4)=(0.105,0.637,0.258)T,因,取W=W(4)。进而,可求得。,
38、3、和积法,(步1)将判断矩阵A的每一列标准化,即令,i,j=1,n,令。,(步2)将 中元素按行相加得到向量,其分量,i=1,n。,(步4)求最大特征根近似值。,仍以前面例子中的OC判断矩阵为例:,,,以上近似方法计算都很简单,计算结果与实际值相差很小,且A的非一致性越弱相差越小,而当A为一致矩阵时两者完全相同。,3、层次分析法应用举例,在应用层次分析法研究问题时,遇到的主要困难有两个:(1)如何根据实际情况抽象出较为贴切的层次结构;(2)如何将某些定性的量作比较接近实际的定量化处理。层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依
39、据。层次分析法也有其局限性,主要表现在:(1)它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性(即矛盾性),却无法排除决策者个人可能存在的严重片面性。(2)比较、判断过程较为粗糙,不能用于精度要求较高的决策问题。AHP是一种半定量(或定性与定量结合)的方法,如何用更科学、更精确的方法来研究问题并作出决策,还有待于进一步的探讨研究。在应用层次分析法时,建立层次结构模型是十分关键的一步,如何从实际问题中抽象出相应的层次结构。,例 招聘工作人员,某单位拟从应试者中挑选外销工作人员若干名,根据工作需要,单位领导认为招聘来的人员应具备某些必要的素质,由此建立层次
40、结构如图7.9所示。,该单位领导认为,作为外销工作人员,知识面与外观形象同样重要,而在能力方面则应有稍强一些的要求。根据以上看法,建立AB层成对比较判断矩阵,求得max=3,CR=0。,类似建立BC层之间的三个成对比较矩阵:,注:权系数是根据后面的计算添加上去的,W=(,)T,经层次总排序,可求得C层中各因子Ci在总目标中的权重分别为:0.047,0.184,0.019,0.167,0.167,0.167,0.184,0.042,0.024,招聘工作可如下进行,根据应试者的履历、笔试与面试情况,对他们的九项指标作19级评分。设其得分为X=(x1,x9)T,用公式,y=0.047x1+0.184
41、x2+0.019x3+0.167(x4+x5+x6)+0.184x7+0.042x8+0.024x9,计算总得分,以y作为应试者的综合指标,按高到低顺序录用。,例(挑选合适的工作)经双方恳谈,已有三个单位表示愿意录用某毕业生。该生根据已有信息建立了一个层次结构模型,如图所示。,该生经冷静思考、反复比较,建立了各层次的成对比较矩阵:,由于比较因素较多,此成对比较矩阵甚至不是正互反矩阵。,(方案层),(层次总排序)如下表 所示。,表,根据层次总排序权值,该生最满意的工作为工作1。(由于篇幅限止,本例省略了一致性检验),例 作品评比。,电影或文学作品评奖时,根据有关部门规定,评判标准有教育性、艺术性
42、和娱乐性,设其间建立的成对比较矩阵为,由此可求得,W=(0.158,0.187,0.656)T,,CR=0.048(0.1),本例的层次结构模型如图 所示,在具体评比时,可请专家对作品的教育性、艺术性和娱乐性分别打分。根据作品的得分数X=(x1,x2,x3)T,利用公式,y=0.158x1+0.187x2+0.656x3,计算出作品的总得分,据此排出的获奖顺序。,读者不难看出,A矩阵的建立对评比结果的影响极大。事实上,整个评比过程是在组织者事先划定的框架下进行的,评比结果是按组织者的满意程度来排序的。这也说明,为了使评比结果较为理想,A矩阵的建立应尽可能合理。,在方案C层中列出的多项指标,有些
43、可用数量表示,有些只能定性表示。即使对于可以定量表示的指标,由于各指标具有不同的量纲,互相之间不能直接进行比较。为此,在层次单排序与总排序时应先统一化成无量纲量。如可将每一指标分为若干等级并对每一等级规定一个合适的得分数。然后再根据各因子的重要程度利用成对比较及层次排序来确定各因子的权。在评估时,只要根据各项指标,利用由层次分析得到的评估公式计算其最终得分即可。AHP分析有一个共同的特征,模型涉及的因素间存在着较为明确的因果关系,这些因果关系又可以分成若干个层次。同一层次中的各因素间相互影响很小基本上可略去不计,上层因素对下层的某些因素存在着逐层传递的支配关系,但不考虑相反的逆关系。更复杂的层
44、次结构可以考虑同一层次内各因素间的相互影响,也可以考虑下层因素对上层因素的反馈作用,因研究这类层次结构需要用到更多的数学知识。,设U=u1,u2,un为n种因素(或指标),V=v1,v2,vm为m种评判(或等级).由于各种因素所处地位不同,作用也不一样,可用权重A=(a1,a2,an)来描述,它是因素集U 的一个模糊子集.对于每一个因素ui,单独作出的一个评判 f(ui),可看作是U到V 的一个模糊映射 f,由 f 可诱导出U 到V 的一个模糊关系 Rf,由Rf可诱导出U 到V 的一个模糊线性变换TR(A)=A R=B,它是评判集V 的一个模糊子集,即为综合评判.(U,V,R)构成模糊综合评判
45、决策模型,U,V,R是此模型的三个要素.,四、模糊综合评判决策,模糊综合评判决策的方法与步骤是:建立因素集U=u1,u2,un与决断集V=v1,v2,vm.建立模糊综合评判矩阵.对于每一个因素ui,先建立单因素评判:(ri1,ri2,rim)即rij(0rij1)表示vj对因素ui所作的评判,这样就得到单因素评判矩阵R=(rij)nm.综合评判.根据各因素权重A=(a1,a2,an)综合评判:B=AR=(b1,b2,bm)是V上的一个模糊子集,根据运算的不同定义,可得到不同的模型.,模型:M(,)主因素决定型,bj=(airij),1in(j=1,2,m).由于综合评判的结果bj的值仅由ai与
46、rij(i=1,2,n)中的某一个确定(先取小,后取大运算),着眼点是考虑主要因素,其他因素对结果影响不大,这种运算有时出现决策结果不易分辨的情况.,模型:M(,)主因素突出型bj=(ai rij),1in(j=1,2,m).M(,)与模型M(,)较接近,区别在于用ai rij代替了M(,)中的airij.在模型M(,)中,对rij乘以小于1的权重ai表明ai是在考虑多因素时rij的修正值,与主要因素有关,忽略了次要因素.,模型:M(,)主因素突出型,bj=(ai rij)(j=1,2,m).模型也突出了主要因素.在实际应用中,如果主因素在综合评判中起主导作用,建议采纳,当模型失效时可采用,.
47、,模型:M(,)加权平均模型bj=(ai rij)(j=1,2,m).模型M(,)对所有因素依权重大小均衡兼顾,适用于考虑各因素起作用的情况.,例1.服装评判,因素集U=u1(花色),u2(式样),u3(耐穿程度),u4(价格);评判集V=v1(很欢迎),v2(较欢迎),v3(不太欢迎),v4(不欢迎).对各因素所作的评判如下:u1:(0.2,0.5,0.2,0.1)u2:(0.7,0.2,0.1,0)u3:(0,0.4,0.5,0.1)u4:(0.2,0.3,0.5,0),对于给定各因素权重A=(0.1,0.2,0.3,0.4),分别用各种模型所作的评判如下:,M(,):B=(0.2,0.3
48、,0.4,0.1)M(,):B=(0.14,0.12,0.2,0.03)M(,):B=(0.5,0.9,0.9,0.2)M(,):B=(0.24,0.33,0.39,0.04),对于给定各因素权重A=(0.4,0.35,0.15,0.1),分别用各种模型所作的评判如下:,M(,):B=(0.35,0.4,0.2,0.1)M(,):B=(0.245,0.2,0.08,0.04)M(,):B=(0.65,0.85,0.55,0.2)M(,):B=(0.345,0.36,0.24,0.055),例2.“晋升”的数学模型.,以高校老师晋升教授为例:因素集U=政治表现及工作态度,教学水平,科研水平,外语
49、水平,评判集V=好,较好,一般,较差,差.,因素 好 较好 一般 较差 差政治表现及工作态度 4 2 1 0 0教学水平 6 1 0 0 0 科研水平 0 0 5 1 1 外语水平 2 2 1 1 1,给定以教学为主的权重A=(0.2,0.5,0.1,0.2),分别用M(,)、M(,)模型所作的评判如下:M(,):B=(0.5,0.2,0.14,0.14,0.14)归一化后,B=(0.46,0.18,0.12,0.12,0.12)M(,):B=(0.6,0.19,0.13,0.04,0.04),模糊数学方法中权重的确定方法,在模糊综合评判决策中,权重是至关重要的,它反映了各个因素在综合决策过程
50、中所占有的地位或所起的作用,它直接影响到综合决策的结果.凭经验给出的权重,在一定的程度上能反映实际情况,评判的结果也比较符合实际,但它往往带有主观性,是不能客观地反映实际情况,评判结果可能“失真”.加权统计方法,频数统计方法,(1)对每一个因素uj,在k个专家所给的权重aij中找出最大值Mj和最小值mj,即Mj=maxaij|1 i k,j=1,2,n;mj=minaij|1 i k,j=1,2,n.(2)选取适当的正整数p,将因素uj所对应的权重aij从小到大分成p组,组距为(Mj-mj)/p.(3)计算落在每组内权重的频数与频率(4)取最大频率所在分组的组中值(或邻近的值)作为因素uj的权