Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx

上传人:李司机 文档编号:6366372 上传时间:2023-10-21 格式:DOCX 页数:11 大小:236.37KB
返回 下载 相关 举报
Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx_第1页
第1页 / 共11页
Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx_第2页
第2页 / 共11页
Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx_第3页
第3页 / 共11页
Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx_第4页
第4页 / 共11页
Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx》由会员分享,可在线阅读,更多相关《Wearable electronics for heating and sensing based on a multifunctional PET silver nanowire PDMS yarn.docx(11页珍藏版)》请在三一办公上搜索。

1、NanoscaleROYALSOCIETYOFCHEMlSTRYPAPERViewArticleOnlineV沁WJournalVieuIssue册CheckforupdatesCitethis:Nanoscale,2020,12,16562WearableelectronicsforheatingandsensingbasedonamultifunctionalPET/silvernanowire/PDMSyarn+.5 Y b/8。N WULW co 人=已。Acn enuo,q POPEO300 OZOZAsf 6Z u。pws=qndZhonglin Yang,* Wenwen Wan

2、g,* Lili Bif Liangjun Chen, Guixin Wang, Guinan Chen, Cui Ye * and Jun Pan tStretchable and fl eible electronics built from multifunctional fi bres are essential for devices in humanmachine interactions, human motion monitoring and personal healthcare. However, the combination of stable heating and

3、precision sensing in a single conducting yarn has yet to be achieved. Herein, a yarn comprising poly(ethylene terephthalate) (PET), silver nano wires (AgNWs), and polydimethylsiloxane (PDMS) was designed and prepared. The PET/AgNW/PDMS yarn exhibited high electrical conductivity at 3 cm-1 and a larg

4、e tolerance to tensile strain up to 100% its own length. Only a negligible loss of electromechanical performance was observed after 1700 strain cycles. And an excellent response to applied strain was also achieved across a huge stretching range. The PET/AgNW/PDMS yarn displayed excellent heating per

5、formance and outstanding breathability when used in a heating fabric, and excellent sensitivity for monitoring both gross and fi ne movements in humans when used as a sensor.Received26thMay2020,Accepted29thJuly2020DOI:10.1039d0nr04023arsc.li/nanoscaleIntroductionFlexibleandstretchablematerialsareatt

6、ractiveforuseinartificialskin,orforbuildingdevicesusedindevelopinghumanmachineinteractions,monitoringhumanmotion,andpersonalhealthcare.-Electricallyconductingyarnshavebeenshowntodisplayremarkableperformancesinenergystorage,sensing,actuation,andCommUniCation.-12Recently,nanomaterialswithexcellentelec

7、tricalandmechanicalproperties,suchascarbonnanotubes,u,i4metalnanowires,is-uandgraphene,havebeenusedtodevelopelectricallyconductingyarns,butsilvernanowires(AgNWs)haveshownthemostpromisebecauseoftheirexcellentconductivityandstretchability.19-22Additionally,variousmethodsareappliedtofabricateAgNWsbased

8、conductingyarnsuchasspraycoating,dip-coating,laserscribing,andSPin-COating.23-26Amongthem,themostsimpleandcheapapproachistodepositAgNWsontoayarnsubstrate.Forpreparingcomfortableandeffectivedevicesfortrackinghumanmovementorprolongedstableheating;thewearableelectronicmustbebreathable,flexibleandstretc

9、hable.27-29MechanicaldeformationsuchasstretchingandbendingCollegeofMaterialsScienceandEngineering,ZhejiangUniversityofTechnology,Hangzhou310014,China.E-mail:panjun0123.ye0702tElectronicsupplementaryinformation(ESI)available.SeeDOI:10.1039/d0nr04023a,Equalcontributiontothisworkusuallydestroystheconne

10、ctivitybetweenconductingfibres,whichinitiallycausesinconsistenciesintheelectricalresistance(referredtoasresistance)throughoutthefabric,buteventuallyleadstodevicefailure.Long-termstabilityisthereforeanessentialresearchgoalfornewconductingyarns.Chengetal.developedaconductingfibrewithahierarchicalEcofl

11、ex-coatedcoppernanowire(CuNW)structure,whichwasusedinstable,stretchable,andwearableheatingdevices.30Liuetal.developedacarbonnanotube-basedfibrewithexcellentmechanicalandheatingproperties,whichcouldbestretchedrepeatedlyupto150%itsownlengthwithhighstabilityandreversibility.3iMeanwhile,multifunctionalw

12、earableelectronicsbasedonyarncomprisingAgNWswerealsoinvestigated.Zhaoetal.preparedapolymer-wrappedAgNWfibreforsimultaneousstrainsensingandheating,whichexhibitedarapid,reproducibleandstableresponseundertensilestrain(1-200%)andenabledhighheatingtemperatures.24Twokeyfactorsareusedtoevaluatetheefficienc

13、yofawearableheaterandstrainsensor:thestabilityofthetemperatureoutputduringdeformation,andthesensitivitytochangesintensilestrain.Toourknowledge,therearenoexamplesofasingleconductingyarnthatexhibitsbothhighlystableheatingandhighlysensitivesensingcapabilities.Mostofthereportedmultifunctionalyarnsexhibi

14、tedalowgaugefactor(GF),whichlimitedtheirsensitivitytofine,subtledeformation.Furthermore,thelongevityofthewearabledeviceswasshortsincetheconductivematerialsintheyarnwerepronetooxidationordetachment,whichmustbeovercomeforachievingwearabledeviceswithlong-termshelflifeandusage.5 Y b/8。N WULW co 人=已。Acn

15、enuo,q POPEO300 OZOZAsf 6Z u。pws=qndTherefore,thephysicalandchemicalstability;andthesensingperformanceofmultifunctionalyarnmustbeimprovedbeforetheycanbeusedinmarketable,wearableelectronicdevices.Toachievethis,wechoseaflexiblepoly(ethyleneterephthalate)(PET)rubbercore-spunthreadasasubstratefordeposit

16、edAgNWstoyieldaconductingyarn.TheAgNWswerethenprotectedfromoxidationanddetachmentbytheapplicationofinsulatingpolydimethylsiloxane(PDMS)layer,whichalsoservedtoimprovethestabilityoftheconductivepropertiesunderappliedmechanicaldeformation.FabricswovenfromthePET/AgNW/PDMSyarnwereusedtopreparemultifuncti

17、onalheatingandsensingmaterialwithhighstretchability,excellentheatingstability,andhighsensitivitytomechanicaldeformation.ResultsanddiscussionThefabricationprocessforthePET/AgNW/PDMSyarnwassummarizedinFig.1.YarncomprisingarubbercorewithanouterlayersuchasPETischeapandwidelyusedinthetextileindustry.32Th

18、erubbercorewastightlysheathedwithsixlayersofPETfibre,whichwerecross-woveninparallel(Fig.1).EachPETfibrewascomposedofmanybundledPETmicrofibres(Fig.S1,ESR),Rubber/PETyarnwasthencoatedwithAgNWsusingadrop-castingmethod.AgNWsweresynthesizedusingapreviouslydescribedpolyolreductionrouteinthepresenceofCl-an

19、dBr-ions.33-35Scanningelectronmicroscope(SEM)analysisrevealedthattheAgNWswereapproximately21nmindiameterandupto20minlength(Fig.S2,ESIt).Beforedrop-castingtheAgNWs,therubber/PETcorewaseitherstretchedto220%ofitsoriginallengthtoprepareayarnwithhighstabilityagainstmechanicaldeformation(Yarn220%)orfixeda

20、titsoriginallengthtoprepareyarnforsensingwithhighsensitivity(Yarn100%),InYarn220%,thedistancebetweeneachloopofthePETfibreincreased,whichallowedtheAgNWstoinfiltratebetweenthePETfibres(Fig,S3,ESI+).AdigitalUV/ozonesystemwasthenusedtocleanthePETsurfacesoforganicimpurities;andtoincreasethehydrophilicity

21、,wherethecontactangledecreasedfrom141.40to56.afterUV/ozonetreatment(Fig.S4zESIt).DuringtheUV/ozonecleaningprocess,theUVlightat254nmhelpeddecomposeloosely-boundorganicmatter,butwasalsoabsorbedbyPETyarnsurface.ThiscausedstrippingoftheoutermostsurfaceofthePET.Atomicoxygengeneratedbythephotonthencombine

22、dwiththeexposedsurfacelayermoleculesandtransformedthemintohighlyhydrophilicfunctionalgroupssuchas-OHr-CHOand-COOH.ThewettabilityofthePETsurfaceincreased,whichenabledastrongerassociationwithAgNWs.ThemorphologyofthePET/AgNWyarnwascharacterizedbyscanningelectronmicroscopy(SEM)(Fig.2).TheuntreatedPETfib

23、resurfacesweresmooth(Fig.2a),andbecameroughenedafterUV/Ozonetreatment(Fig.2b).AgNWsweremoreuniformlydistributedonpretreatedPETfibresurfaces,whichconfirmedthatUVOzonetreatmentwasbeneficaltotheadhesionofAgNWsontoPETsurfaces(Fig.2c-f).PhotographsofthePETyarnafterAgNWcoatingsshowedthatthecolourturnedfro

24、mwhitetodark-green,confirmingthattheAgNWswereevenlydistributedontheyarncore(Fig.S5,ESH).Finally,auniformPDMSlayerwasappliedtotheexteriorsurfaceusingtwodifferentcoatingmethodsforeitherYarn220%orYarn100%(seeExperimentalsection)(Fig.2g).Thisproduceddifferencesinthelayeredstructure,asobservedfromSEMmicr

25、ographsofyarncross-sections(Fig.2handi).InYarn220%,PDMScompletelyinfiltratedthePETfibresasitwasdepositedontoastretchedcore,whereasthePDMSonlycoatedtheoutermostsurfaceofYarn100%.BecausePDMSpossessesexcellentstretchabilityandflexibilityundermechanicaldeformation,itshoulddeformconformallywiththeunderly

26、ingyarnduringstretching.ThissuggestedthatthePDMScoatinginYarn220%wouldprovidegreaterstabilityagainsttensilestrain.36ThesensingandheatingcapabilitiesofthePETAgNWPDMSyarnwerethenexamined.Theirelectromechanicalperformancewasassessedbyexaminingthechangeinresistanceundervariousapplieddeformationmodes(Fig

27、.3).Theresistanceperunitlengthdecreasedfrom800to3whenthenumberofdrop-castingcycleswasincreasedfrom1to10(Fig.3a).Theincreaseindrop-castingcyclesledtoanincreaseinthequalityofAgNWcoating,quantifiedasmassperunitlength,whichexplainedthedecreaseofresistance.Atanevenhighernumbersofdrop-castingcycles,theres

28、istanceandqualitywereunaffected(Fig.S6,ESIt).TheimprovedconductivityofAgNWsathigherdrop-castingcycleswasattributedtoFig.1SchematicdescribingthefabricationofthePET/AgNW/PDMSyarn.PaperNanoscale5 Y b/80N WULW co A=SJPVUn enuo,q POPEO300 .OZOZAsf 6Z UOIXHJS-一 qnjFig. 2 SEM micrographs of (a) untreated P

29、ET yarn, (b) UV Ozone treated PET yarn. (c and d) Untreated PET yarn after three coatings of AgNWs. (e and f) UV Ozone treated PET yarn after three coatings of AgNWs. (g) The outer surface of the PET/AgNW/PDMS yarn, (h and i) Cross-sections of the PET/AgNW/PDMS yarn with PDMS coating 叩Plied when str

30、etched (h) or not stretched (i) (inset scale bar: 50 m).anoptimizedinterconnectionbetweenAgNWs.Thisprovidedthegreatestnumberofcoherentconductivepathwaysthroughoutthebulk,whichwasSimilartopreviousobservationswithAgNWswheretheresistancedecreasedafterannealingathightemperatures.37Inallproceedingstudies

31、,PETcoreswerecoatedwithAgNWsusingtendrop-castcycles,sincethisprovidedtheoptimalresistanceandquality.Theeffectoftensilestrainontherelativeresistancewasthenexamined(Fig.3b)3differentyarnsamplesunderdifferenttensilestrain:Yarn220%withoutPDMScoating,andYarn100%andYarn220%withPDMScoating.ThePDMS-freeYarn

32、220%displayeda2.5-foldincreaseinrelativeresistancewhenitwasstretchedto140%ofitsoriginallength(i.e.,40%tensilestrain).Inaddition,onlyaminor0.4-foldincreaseinrelativeresistancewasdisplayedbyPDMS-coatedYarn220%under40%tensilestrainbecausetheinterconnectivitybetweenAgNWswasmaintainedbythePDMSlayer,asdes

33、cribedabove.Incontrast,therelativeresistanceofPDMS-coatedYarn100%displayeda3-foldincreaseunder40%tensilestrain.Remarkably,therelativeresistanceofthePDMS-coatedYarn100%respondednon-lin-earlyunder100%tensilestrain.Insomecases,theuseofnonlinearstrainsensorscanimprovetheaccuracyofthereportedstrain.Moreo

34、ver,thevariationintherelativeresistancewaslinearwithtensilestrainwithin30%strainrange(Fig.S7,ESI+).ThishighlightedthecapabilitiesofPDMS-coatedYarn100%astheactivematerialinastrainsensingPET/AgNW/PDMSyarn.38ThechangeinthesurfacemicrostructureofPDMS-freeYarn220%causedbyanappliedtensilestrainwascharacte

35、rizedbySEM(Fig.S3,ESIt).Atatensilestrainof60%,thegapsbetweenPETfibresbecameenlarged,theinterconnectedAgNWnetworkwasdamaged,andtheresistancethereforeincreased.Asthetensilestrainwasincreasedfurtherto100%,nofurtherexpansionofthegapsbetweenPETfibreswasobserved;thusnofurtherchangesweremadetotheAgNWnetwor

36、kandresultingrelativeresistance.ForPDMS-coatedYarn100%,asimilareffectwasobserveduptoatensilestrainof40%.However,betweentensilestrainsof40%and100%,theAgNWsbecamereconnectedduetothecompressiveforcefromtheouterPDMSlayerontheinnercore,causingadecreaseinresistance.Finally,theimprovedtolerancetotensilestr

37、ainobservedinPDMS-coatedYarn220%wasattributedtothebackfillingofgapsbetweenPETfibreswithPDMSduringthecoatingprocess,whichprotectedtheinterconnectedAgNWsduringstretching.TheelectromechanicalperformanceofPDMS-coatedYarn220%wasalsoexaminedundervariousdeformationmodestoassessitssuitabilityforuseinwearabl

38、eheatingdevices(Fig.3c).Whensubjectedtodeformationbybending,therelativeresistanceincreasedbyonly10%whenthebendingradiuswasshortenedfrom10mmto1mm(Fig.3c).Meanwhile,therelativeresistancevariedbyamaximumof40%duringacyclicstretchingtestfeaturing1700cyclesat30%tensilestrain(1Hz)(Fig.3d);andbyamaximumof3%

39、duringacyclicbendingtest,featuring1000bendingcycles(Fig.3e).5 Y b/8。N WULW co 人=已。Acn enuo,q POPEO300 OZOZAsf 6Z u。pws=qndFig. 3 Electromechanical properties of the PET/AgNW/PDMS yarn. (a) Resistance and quality of AgNWs as a function of the number of dipping cycles. (b) Relative resistance variatio

40、n of the PET/AgNW/PDMS yarn before PDMS coating, PDMS coating at origin length, and PDMS coating at stretching length, (c) Relative resistance variation of the PET/AgNW/PDMS yarn that PDMS coating at stretching length under the different bending radius (straight, 10 mm, 5 mm, 3 mm and 1 mm respectiv

41、ely), (d) Relative resistance variation of the PET/AgNW/PDMS yarn in cyclic stretching (a strain of 30%) 1700 cycles (inset, cycles of middle part), (e) Relative resistance variation of the PET/AgNW/PDMS yarn in cyclic bending (bending radius of 10 mm) 1000 cycles (inset, cycles of middle part), (f)

42、 Changes in Relative resistance of the PET/AgNW/PDMS yarn after storage in air for different times, (g) Photos of LED brightness variation vs. elongation and release of the PET/AgNW/PDMS yam connected in the electric circuit.Significantly,thePDMS-coatedYarn220%exhibitedanincreaseinresistanceofonly7%

43、aftersixmonthsstorage(Fig.3f).Finally,theabilityofPDMS-coatedYarn220%tocarrysufficientcurrentwasexaminedbyincorporatingalengthofyarnintoacircuitfeaturinganLEDarray(Fig.3g).NosignificantchangestothebrightnessoftheLEDarrayweredetecteduponapplyingatensilestrainof70%tothePET/AgNW/PDMSyam,suggestingthata

44、nychangesinresistancecausedbyanincreasedstrainmadeanegligibleimpactontheconductivitythroughtheyarn.TheseelectromechanicaltestsdemonstratedthatthePET/AgNW/PDMSyarnwassuitablydurable,stable,andreliableforuseinwearableheatingdevices.TheeffectofstrainontheheatingperformanceofthePET/AgNW/PDMSyarnwasthena

45、ssessedbymeasuringthetemperatureoftheyarnbyinfrared(IR)imagingwhenvariousvoltagesandstrainwereapplied(Fig.4).Astheappliedvoltageincreased,thetemperatureoftheyarnalsoincreasedgraduallyuptoasaturationtemperature,whichwasshowntobestableoveratleast30satafixedvoltage(Fig.4a).Atemperatureof90wasachievedat

46、avoltageof5V.IRimagessuggestedthatthetemperaturewasuniformacrosstheentireyarnatallappliedvoltages,whichsuggestedthattheAgNWswereevenlydistributed.ThestabilityandreliabilityoftheheatingfromthePET/AgNW/PDMSyarnwerethenstudiedataconstantvoltageof4V,onayarnstrandofI=5cm,r=1.2mmandR11=10cm-1.Thetemperatu

47、reresponseofPET/AgNW/PDMSyarntotheappliedvoltagewasexaminedwithheatingcycles(Fig.4b).TheappliedvoltagewascycledfromOff(0V)toon(4V)every60s.Whenthevoltagewasapplied,thetemperatureincreasedrapidlyfrom30to53within30sduetothelowresistanceoftheyarn.Coolingoccurredatthesamerate.Nosignificantchangesinthehe

48、atingbehaviorwereobservedaftercyclingfor100times,whichsuggestedthattherapidJouleheatingpropertyofthePET/AgNW/PDMSyarnwassuitablystableandreliableforlong-termuseinwearableheatingdevices.TheheatingperformanceofthePET/AgNW/PDMSyarnwasthenfurtherstudiedbygraduallyincreasinganappliedtensilestrainin10%ste

49、pswhileapplyingafixed4Vvoltage.Theresistance(Fig.4c),andtemperature(Fig.4d)wererecordedintheentireexperiment.Theresistanceincreased,andthetemperaturedecreasedwhen20%tensilestrainwasappliedtotheheater,butbothwerestablebetween20%and100%strain.Nanoscale.5 Y b/8。N WULW co 人=已。Acn enuo,q POPEO300 OZOZAsf 6Z u。pws=qndTtaMTlot )Fig. 4 Thermal

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号