《高一数学整数值随机数的产生.ppt》由会员分享,可在线阅读,更多相关《高一数学整数值随机数的产生.ppt(20页珍藏版)》请在三一办公上搜索。
1、3.2.2(整数值)随机数的产生,3.2 古典概型,问题提出,1.基本事件、古典概型分别有哪些特点?,基本事件:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.,古典概型:(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性).,2.在古典概型中,事件A发生的概率如何计算?,3.通过大量重复试验,反复计算事件发生的频率,再由频率的稳定值估计概率,是十分费时的.对于实践中大量非古典概型的事件概率,又缺乏相关原理和公式求解.因此,我们设想通过计算机模拟试验解决这些矛盾.,P(A)=事件A所包含的基本事件的个数基
2、本事件的总数.,(整数值)随机数的产生,探究1:随机数的产生,思考1:对于某个指定范围内的整数,每次从中有放回随机取出的一个数都称为随机数.那么你有什么办法产生120之间的随机数.,抽签法,思考2:随机数表中的数是09之间的随机数,你有什么办法得到随机数表?,我们可以利用计算器产生随机数,其操作方法见教材P130及计算器使用说明书.,我们也可以利用计算机产生随机数,,(1)选定Al格,键人“RANDBETWEEN(0,9)”,按Enter键,则在此格中的数是随机产生数;,(2)选定Al格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A1至A100的数均为随机产生的09
3、之间的数,这样我们就很快就得到了100个09之间的随机数,相当于做了100次随机试验.,用Excel演示:,思考3:若抛掷一枚均匀的骰子30次,如果没有骰子,你有什么办法得到试验的结果?,用Excel演示,由计算器或计算机产生30个16之间的随机数.,思考4:若抛掷一枚均匀的硬币50次,如果没有硬币,你有什么办法得到试验的结果?,用Excel演示,记1表示正面朝上,0表示反面朝上,由计算器或计算机产生50个0,1两个随机数.,思考5:一般地,如果一个古典概型的基本事件总数为n,在没有试验条件的情况下,你有什么办法进行m次实验,并得到相应的试验结果?,将n个基本事件编号为1,2,n,由计算器或计
4、算机产生m个1n之间的随机数.,思考6:如果一次试验中各基本事件不都是等可能发生,利用上述方法获得的试验结果可靠吗?,探究(二):随机模拟方法,思考1:对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为随机模拟方法或蒙特卡罗方法(Monte Carlo).你认为这种方法的最大优点是什么?,不需要对试验进行具体操作,可以广泛应用到各个领域.,思考2:用随机模拟方法抛掷一枚均匀的硬币100次,那么如何统计这100次试验中“出现正面朝上”的频数和频率.,除了计数统计外,我们也可以利用计算机统计频数和频率,用
5、Excel演示.,(1)选定C1格,键人频数函数“FREQUENCY(Al:A100,0.5)”,按Enter键,则此格中的数是统计Al至Al00中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;,(2)选定Dl格,键人“1-C11OO”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率,思考3:把抛掷两枚均匀的硬币作为一次试验,则一次试验中基本事件的总数为多少?若把这些基本事件数字化,可以怎样设置?,可以用0表示第一枚出现正面,第二枚出现反面,1表示第一枚出现反面,第二枚出现正面,2表示两枚都出现正面,3表示两枚都出现反面.,思考4:用随机模拟方法抛掷
6、两枚均匀的硬币100次,如何估计出现一次正面和一次反面的概率?,用频率估计概率,Excel演示.,知识迁移,例1 利用计算机产生20个1100之间的取整数值的随机数.,例2 天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟方法估计这三天中恰有两天下雨的概率约是多少?,要点分析:,(1)今后三天的天气状况是随机的,共有四种可能结果,每个结果的出现不是等可能的.,(2)用数字1,2,3,4表示下雨,数字5,6,7,8,9,0表示不下雨,体现下雨的概率是40%.,(3)用计算机产生三组随机数,代表三天的天气状况.,(4)产生30组随机数,相当于做30次重复试验,以其中表示恰有两天下
7、雨的随机数的频率作为这三天中恰有两天下雨的概率的近似值.Excel演示,(5)据有关概率原理可知,这三天中恰有两天下雨的概率P=30.420.6=0.288.,例3 掷两粒骰子,计算出现点数之和为7的概率,利用随机模拟方法试验200次,计算出现点数之和为7的频率,并分析两个结果的联系和差异.,小结作业,1.用计算机或计算器产生的随机数,是依照确定的算法产生的数,具有周期性(周期很长),这些数有类似随机数的性质,但不是真正意义上的随机数,称为伪随机数.,2.随机模拟方法是通过将一次试验所有等可能发生的结果数字化,由计算机或计算器产生的随机数,来替代每次试验的结果,其基本思想是用产生整数值随机数的频率估计事件发生的概率,这是一种简单、实用的科研方法,在实践中有着广泛的应用.,监控摄像头 监控摄像头 欢鬻乸,