《大学物理光的波洞葱炉.ppt》由会员分享,可在线阅读,更多相关《大学物理光的波洞葱炉.ppt(77页珍藏版)》请在三一办公上搜索。
1、第五讲 机 械 波,声波、水波、电磁波都是常见的波。,各种类型的波有其特殊性,但也有普遍的共性,可以用相同的数学形式来描述。,波动的分类:机械波、电磁波、物质波。,第五讲 机 械 波,一、机械波产生的条件(源和路),1.波源,2.连续介质,1 机械波的形成和传播,二、机械波的类型,1.横波:介质中质点振动的方向与波的传播方向垂直,2.纵波:介质中质点振动的方向与波的传播方向平行,1)横波只能在固体中。,2)纵波在所有物质中都可以传播。,波速,注意,1、有些波既不是横波也不是纵波。如:水表面的波既非横波又非纵波。水波中的质元是做圆(或椭圆)运动的。,flash,波动是振动状态(相位)的传播,是能
2、量的传播,质元并未“随波逐流”。,后面质点的振动规律与前面质点的振动规律相同,只是位相上有一个落后。,重要结论:,三、波长、波的周期和频率 波速波动描述,1、波长l 同一时刻,两个相邻的相位差 为2的振动质点间的距离。,3、频率n 单位时间内波向前传播的完整波 的数目.(1s内向前传播了几个波长),2、波的周期T 波传过一个波长的时间。,周期或频率只决定于波源的振动,在波动过程中,某一振动状态在单位时间内传播的距离。,4、波速:,平面波,球面波,各向同性均匀介质中,波线恒与波面垂直。,沿波线方向各质点的振动相位依次落后。,四、波线和波面,五、简谐波,简谐波是最基本的波动,波源和介质的各质点均作
3、简谐振动。数学上的傅里叶分解法告诉我们,任何非简谐振动都可以分解为许多简谐振动的组合。因此,研究简谐波特别重要。,一、平面简谐波的波函数,1、右行波的波动方程:,(1)已知O点振动表达式:,P点在t时刻的振动状态,与O点在(t-x/u)时刻的振动状态相同。,2 平面简谐波的波动方程,P点的相位比O点相位落后。,参考点O,(滞后效应),(2)如图,已知 P 点的振动方程:,思考,(1)已知O点振动表达式:,思考,2、左行波的波动方程:,(超前效应),(2)如图,已知 P 点的振动方程:,思考,注意:,1、t 一定时的波形图(快照),讨论各质点在给定时刻的振动方向,二、波函数的物理意义,例1:如图
4、所示,为一简谐波在t=0时刻的波 形图。试写出O、1、2、3点的初位相,解:画出下一时刻的波形图,(1),(2),讨论质点在某一时刻的振动方向,质点的振动速度,2、x一定,t 变化。,表示 点处质点的振动方程(的关系),波速即波形平移的速度!,3、t、x都变化时:,对应跑动的波形(行波),通常:,例2:一平面简谐波某时刻的波形图如下,则OP之间的距离为多少厘米。,解题思路:,设波向右传播(P点落后于O点),思考:若设波朝左传,则,例3:一平面波在介质中以速度 u=20m/s 沿x 轴正方向传播,已知在传播路径上某点a点的振动方程为 ya=3cos4t(m)(1)以a为坐标原点写出波动方程。(2
5、)以距a点5m处的o点为坐标原点,写出 波动方程。(3)求出oc 两点之间的位相差,解:ya=3cos4t,(1)a为坐标原点:,(2)0点为坐标原点:,0 点振动方程,(3)求出oc 两点之间的位相差,例4:沿X轴正方向传播的平面简谐波、在 t=2s 时的波形如图,已知A、u及,问:1)原点O的初相及P点的初相各为多大?2)写出波动方程。,解题思路:,思考:求O、P两点之间的位相差。,设有一行波:,质量为 的媒质元其动能为:,3 波的能量,质元的速度:,一、媒质中振动动能,二、媒质中振动势能,可以证明:,势能:,总能:,3 波的能量(补充),胡克定律:在弹性限度内,应力和应变成正比。,式中E
6、为关于线变的比例系数,它随材料的不同而不同,叫杨氏模量。,补充:,振动动能,以固体棒中传播的纵波为例分析波的能量.,弹性势能,能量极小,能量极大,体积元在平衡位置时,动能、势能和总机械能均最大.,体积元的位移最大时,动能、势能和总机械能均最小.,波的能量密度:,平均能量密度:,随时间变化,也适用于球面波,平均能流,三、能流和能流密度,1、能流 单位时间内通过某一截面的能量。,2、能流密度(波的强度 I)通过垂直于波速方向的单位面积的平均能流。,波强是矢量,其方向与波速方向相同。,波强是与振幅的平方成正比,其单位是W/m2。,例:如图,某一点波源发射功率为40瓦,求球面波上单位面积通过的平均能流
7、。,解:,(1)在均匀不吸收能量的媒质中传播的平面波在行进方向上振幅不变。,证明:因为 所以在单位时间内通过 和 面的能量应该相等,所以,平面波振幅相等。,平面波和球面波的振幅,设距波源单位距离的振幅为A,则距波源 r 处的振幅为,(2)球面波振幅与它离波源的距离成反比。,一、惠更斯原理:波阵面(波前)上的每一点,都是发射子波的新波源,其后任意时刻,这些子波的包络面就是新的波阵面。,用惠更斯原理解释波的传播行为,4 惠更斯原理 波的叠加和干涉,视频,波的衍射,水波通过狭缝后的衍射,波在传播过程中遇到障碍物时,能绕过障碍物的边缘,在障碍物的阴影区内继续传播.,惠更斯原理解释波的衍射:,如你家在大
8、山后,听广播和看电视哪个更容易?(若广播台、电视台都在山前侧),1、若有几列波同时在介质中传播,则它们各自将以原有的振幅、频率和波长独立传播;并不因为其它波的存在而改变。(独立性),2、在几列波相遇处,质元的位移等于各列波单独传播时在该处引起的位移的矢量和(叠加性),二、波的叠加原理:,细雨绵绵 独立传播,能分辨不同的声音正是这个原因;叠加原理的重要性在于可以将任一复杂的波分解为简谐波的组合。,三、波的干涉,相干条件:,相同的频率恒定的初相位差振动方向相同,干涉现象两列波相遇区域内,某些点的振动始终加强,另一些点的振动始终减弱的现象,传播到 P 点引起的振动:,波源S1:,波源S2:,1)合振
9、动的振幅(波的强度)在空间各点的分布随位置而变,但是稳定的.,称 为波程差,干涉加强,干涉减弱,如图示,,当两相干波源为同相波源,即 时,解:,例1:如图S1、S2为两平面简谐波相干波源,S2的位相比S1的位相超前,S1在P点引起的振幅为0.3m,S2在P点引起的振幅为0.2m,求P点的合振幅。,解:S1、S2为两个相干波 源,且初位相相同。,加强:,加强点的分布:,减弱:,减弱点的分布:,一、产生驻波的演示实验,5 驻 波,现象:AB弦线被分成几段长度相等的作稳定振动的部分,有些点始终静止,另一些点振动最强。,驻波是入射波与反射波干涉的结果。,说明:,二、驻 波方 程,设:,求出驻波的表达式
10、:,合振动的振幅项,(1)各点都在作简谐振动,振幅:,(2)波节位置:,讨论:,相邻波节(腹)间距:,波腹位置:,3)相邻两波节之间质点振动同相位,任一波节两侧振动相位相反,在波节处产生 的相位跃变.(与行波不同,无相位的传播).,例1:如图,若o、处分别有两个相干波源,其振动方程分别为:,求波腹和波节的位置。,解题思路:,驻波,右行波,左行波,对其中的任一点 x,当波由波密煤质入射到波疏煤质,在反射点,入射波和反射波的位相相同(即无半波损失),波疏煤质,三、相位跃变(半波损失),波密煤质,界面,入射波在界面上反射时,引起相位相反(相位有p跃变),有半波损失动画,无半波损失动画,解:(1)取O
11、点为坐标原点,则入射波的波动方程为:,反射波的波动 方程为:,(2)能形成驻波的两列相干波,传播方向相反,已知入射波的波动方程为,则反射波的波动方程必可设为,在B点,xl1处是波节,解题思路:,例4:在弹性媒质中有一沿X轴正向传播的平面波,其波动方程为:若在X5.00m处有一媒质分解面,且在分解面处位相突变,设反射波的强度不变,试写出反射波的波动方程。,解题思路:,由题意知,在X5.00m处是一波节,,6 多普勒效应,当鸣笛的火车开向站台,站台上的观察者听到的笛声变尖,即频率升高;相反,当火车离开站台,听到的笛声频率降低。,现象,多普勒效应:观察者接受到的频率有赖于波源或观察者运动的现象。,视
12、频,接收频率单位时间内观测者接收到的振动次数或完整波数.,人耳听到的声音的频率与声源的频率相同吗?,只有波源与观察者相对静止时才相等.,一、机械波的多普勒现象,1、声源不动,设观察者(observer)相对于媒质的运动速度为,(2)人远离声源运动,(1)人向声源运动,二、观察者不动,波源相对介质以 运动,动画,设声源(sourcer)相对于媒质的运动速度为,则:,(1)声源向观察者移动,则:,(2)声源背离观察者移动,观察者向波源运动+远离-,波源向观察者运动-远离+,三 波源与观察者同时相对介质运动,动画,不论是波源运动,还是观察者运动,或是两者同时运动,定性地说:,结论:,两者靠近,接受到
13、的频率高于原来波源的频率;两者远离,接受到的频率低于原来波源的频率;,应作为运动速度沿波源和观察者连线方向的分量。,当 时,所有波前将聚集在一个圆锥面上,波的能量高度集中形成冲击波或激波,如核爆炸、超音速飞行等.,1、报警和监测车速。医学上,测量血流速度、做超声心动等。,三、应用,2、跟踪人造地球卫星等。,3、天文学家利用电磁波红移说明大爆炸理论;,4、用于贵重物品、机密室的防盗系统;,冲击波(激波),当波源向接收器运动时,接收器接收的频率比波源的频率大,但当波源的速度等于波的速度,波源总在波阵面上。,如果波源的速度大于波的速度,波源总在波阵面前面。,冲击波,马赫角,马赫数=,飞机冲破声障时将
14、发出巨大声响,造成噪声污染,视频,警察用多普勒测速仪测速,超声多普勒效应测血流速,例1:一静止波源向一飞行物发射n=30KHZ的超声波,飞行物离波源而去,在波源处测得发射波与反射波拍频为Dn=100Hz。已知声速为u=340m/s,计算飞行物离去速度的大小。,解:,飞行物得到的频率为:,波源处测得飞行物的反射波的频率为:,拍频:,例2:如图,A、B为两个汽笛,其频率均为500Hz,A为静止的,B以60m/s的速率向右运动。在两个汽笛之间有一观察者R,以30m/s的速度也向右运动,已知空气中的声速为330m/s,求:(1)观察者听到来自A的频率。(2)观察者听到来自B的频率。(3)观察者听到的拍频。,解:,二、光的多普勒效应*,光的传播是“自己到达”,不需媒质传播,光速不变,C=nl,光源与观察者的运动是相对的,若相对速度为V,则可用相对论证明光波的频率变为:,红移:当光源远离接收器时,接收到的频率变小,因而波长变长。如来自星球与地面同一元素的光谱比较,发现几乎都发生红移。这就是“大爆炸”宇宙学理论的重要依据。,