《高数常系数非齐次线性微分方程.ppt》由会员分享,可在线阅读,更多相关《高数常系数非齐次线性微分方程.ppt(19页珍藏版)》请在三一办公上搜索。
1、11/6/2023,常系数非齐次线性微分方程,第八节,一、,二、,11/6/2023,二阶常系数线性非齐次微分方程:,根据解的结构定理,其通解为,求特解的方法,根据 f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.,待定系数法,11/6/2023,一、,为实数,设特解为,其中 为待定多项式,代入原方程,得,为 m 次多项式.,(1)若 不是特征方程的根,则取,从而得到特解,形式为,Q(x)为 m 次待定系数多项式,11/6/2023,(2)若 是特征方程的单根,为m 次多项式,故特解形式为,(3)若 是特征方程的重根,是 m 次多项式,故特解形式为,小结,对方程,此结论
2、可推广到高阶常系数线性微分方程.,即,即,当 是特征方程的 k 重根 时,可设,特解,11/6/2023,代入方程,即可确定系数:,从而确定特解.,特解的形式为,将,11/6/2023,提示,因为f(x)Pm(x)ex3x1 0不是特征方程的根 所以非齐次方程的特解应设为 y*b0 xb1 把它代入所给方程 得,例1 求微分方程y2y3y3x1的一个特解,解,齐次方程y2y3y0的特征方程为r22r30,b0 xb12b0 xb13b0 xb1,3b0 x2b03b1,2b03b0 x3b1,3b0 x2b03b13x1,提示,3b03 2b03b11,11/6/2023,例2 求微分方程y5
3、y6yxe2x的通解,解,齐次方程y5y6y0的特征方程为r25r 60,其根为r12 r23,提示,齐次方程y5y6y0的通解为YC1e2xC2e3x,因为f(x)Pm(x)exxe2x 2是特征方程的单根 所以非齐次方程的特解应设为 y*x(b0 xb1)e2x 把它代入所给方程 得,2b0 x2b0b1x,提示,2b01 2b0b10,因此所给方程的通解为,11/6/2023,二、,第二步 求出如下两个方程的特解,分析思路:,第一步将 f(x)转化为,第三步 利用叠加原理求出原方程的特解,第四步 分析原方程特解的特点,11/6/2023,第一步,利用欧拉公式将 f(x)变形,11/6/2
4、023,第二步 求如下两方程的特解,是特征方程的 k 重根(k=0,1),故,等式两边取共轭:,为方程 的特解.,设,则 有,特解:,11/6/2023,第三步 求原方程的特解,利用第二步的结果,根据叠加原理,原方程有特解:,原方程,均为 m 次多项式.,11/6/2023,第四步 分析,因,均为 m 次实,多项式.,本质上为实函数,11/6/2023,小 结:,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根(k=0,1),上述结论也可推广到高阶方程的情形.,11/6/2023,例4.,的一个特解.,解:本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数,得,于是求得
5、一个特解,11/6/2023,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数,得,因此特解为,代入方程:,所求通解为,为特征方程的单根,因此设非齐次方程特解为,11/6/2023,内容小结,为特征方程的 k(0,1,2)重根,则设特解为,为特征方程的 k(0,1)重根,则设特解为,3.上述结论也可推广到高阶方程的情形.,11/6/2023,思考与练习,时可设特解为,时可设特解为,提示:,1.(填空)设,11/6/2023,2.求微分方程,的通解(其中,为实数).,解:特征方程,特征根:,对应齐次方程通解:,时,代入原方程得,故原方程通解为,时,代入原方程得,故原方程通解为,11/6/2023,3.已知二阶常微分方程,有特解,求微分方程的通解.,解:将特解代入方程得恒等式,比较系数得,故原方程为,对应齐次方程通解:,原方程通解为,