Lecture03非典型回归模型及其应用.ppt

上传人:牧羊曲112 文档编号:6510827 上传时间:2023-11-07 格式:PPT 页数:49 大小:333KB
返回 下载 相关 举报
Lecture03非典型回归模型及其应用.ppt_第1页
第1页 / 共49页
Lecture03非典型回归模型及其应用.ppt_第2页
第2页 / 共49页
Lecture03非典型回归模型及其应用.ppt_第3页
第3页 / 共49页
Lecture03非典型回归模型及其应用.ppt_第4页
第4页 / 共49页
Lecture03非典型回归模型及其应用.ppt_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《Lecture03非典型回归模型及其应用.ppt》由会员分享,可在线阅读,更多相关《Lecture03非典型回归模型及其应用.ppt(49页珍藏版)》请在三一办公上搜索。

1、第三章 非典型回归模型及其应用,学习目标:熟悉异方差、自相关性、多重共线性的检验方法;了解广义矩(GMM)模型及其应用;熟悉面板数据模型及其在金融计量中的应用;掌握Logisitic 模型和Probit模型的应用。,第三章 非典型回归模型及其应用,第一节 普通最小二乘假设的违背第二节 广义矩模型第三节 面板数据(panel data)模型第四节 离散因变量模型应用,普通最小二乘假设的违背,第一节 普通最小二乘假设的违背如前所述,最小二乘回归具有一系列前提假设。判断是否满足最小二乘回归的假设是最重要的。在此,我们特别需要检验:(1)异方差性导致不满足残差具有不变方差的假设;(2)自相关导致不满足

2、残差之间相互独立的假设;(3)多重共线性导致不满足自变量之间不相关的假设。在本节中,我们重点对违背最小二乘回归假设的这三种情况进行分析。,普通最小二乘假设的违背,一、异方差性分析(一)异方差问题在多元线性回归模型中,随机扰动项 满足同方差性的基本假定,即它们具有相同的方差。但如果随机扰动项的方差并非不变的常数,则称为异方差性(Heteroskedasticity),即指随机变量服从不同方差的分布。异方差性用公式表达为:。在计量经济学中,产生异方差的原因有多种,比如模型中遗漏了某些解释变量,模型函数设定误差,样本数据的测定误差,以及随机因素的影响等等。,普通最小二乘假设的违背,(二)异方差检验1

3、、图示检验法残差图分析残差图分析是在利用Eviews进行回归模型估计后,在方程窗口点击“Resids”按钮,直接在屏幕上看到残差分布图。如果残差分布图的区域逐渐变窄或变宽,或出现偏离带状区的复杂变化,则表明存在异方差性。相关图分析,异方差检验残差图,普通最小二乘假设的违背,2、White检验怀特(White)提出的异方差的一般检验方法,具有简便有效的特点。假定模型为:White检验步骤如下:(1)首先应用OLS估计回归方程,得到残差。(2)然后进行辅助回归(3)计算统计量 值。(4)在 的原假设下,服从自由度为5的 分布。如果 大于给定显著水平a对应的临界值,则拒绝原假设,表明随机误差项中存在

4、异方差。,普通最小二乘假设的违背,(三)异方差的解决方法1、模型变换法模型变换法是对存在异方差的总体回归方程作适当的变换,使之满足同方差的假定,然后在运用OLS估计。设一元回归模型为:其中,具有异方差性,表现为:,其中 为常数,0。经过变换可得变换后模型的随机模型的误差项具有同方差性所以,可以对变换后的模型进行OLS估计。,普通最小二乘假设的违背,2、变量对数变化法仍以模型 为例,变量、和、替代,则对应的模型别转换为:对上述模型进行估计,通常会降低异方差的影响。原因有二:一是对数转换能够将测度变量的数值所有缩小,从而将两个变量值间10倍的差异缩为2倍的差异;二是经过对数变化后的线性模型其残差相

5、应变为相对误差,从而具有相对小的数值。,普通最小二乘假设的违背,3、加权最小二乘法(WLS)当 已知或可以估计时,可以采用加权最小二乘法加以处理。所谓加权,是指对于不同的残差赋予不同的权重。具体来说,在OLS估计时,我们使 最小化而估计出了 和 的值,在此过程中对于不同的 给予了相同的权重,从而模型不再精确。为了避免这一问题,正确的做法是将较小的 给予较大的权重,而将较大 的给予较小的权重,以此对残差提供的信息的重要程度加以调整,提高参数估计的精度。,普通最小二乘假设的违背,二、自相关性(一)自相关问题在经典假定中,要求随机误差项 满足不相关的假定,即,对于任意 成立。当随机误差项 仍然满足零

6、期望、同方差的假定,但是违反 假定时,称随机误差项存在自相关性。一阶自相关就是指:其中,是自相关系数,满足:,普通最小二乘假设的违背,(二)自相关的检验1图示检验法可以用残差图来直观判断误差项的自相关性,主要有两种方法:一是以 为横轴以 为纵轴作残差序列的散点图。二是以时间t为横轴,以 为纵轴作散点图。2DW检验,自相关性图示检验,普通最小二乘假设的违背,(三)自相关问题的解决1广义差分法在自相关系数已知的情况下,可以用差分法对模型进行变换,使误差项满足无自相关的假定,从而进行OLS估计。将 滞后一期,两边乘以,可得:用 减上式,变量替换,可以得到:至此,变换后模型的误差项满足经典假定,可以进

7、行OLS估计。,普通最小二乘假设的违背,2Durbin两步法与Cochrane-Orcutt法在自相关系数 未知的情况下,可以利用回归算出的DW统计量来算出 值,或是构建辅助回归 来求出 值,再进行差分运算,其思想与广义差分法较为类似。对一次差分后的OLS残差序列 进行检验,如果仍然存在自相关,则要继续进行迭代和差分,直到残差不存在自相关为止。在实际处理中,一般两次迭代,就基本满足无自相关的要求了。,普通最小二乘假设的违背,三、多重共线性(Multicollinearity)(一)多重共线性问题提出在现实经济中,当我们构建多元线性回归模型时,不可避免的引入两个或两个以上变量,而这些变量之间或多

8、或少的存在相互关联。当这些解释变量之间高度相关甚至完全线性相关时,就会出现所谓的多重共线性问题。多重共线性是包括完全多重共线性(Perfect multicollinearity)和近似多重共(near multicollinearity)。完全多重共线性是指若干解释变量或全部解释变量之间存在着严格的共线性关系。,普通最小二乘假设的违背,多重共线性产生的原因主要有以下几个方面:一是经济变量之间的内在联系。很多经济变量之间存在着因果关系,或是共同受其它因素的影响,比如说,收入消费等宏观经济指标在经济繁荣时都趋向增长,而在经济衰退时在有所衰减,在长期内变化存在一致性。所以多重共线性是计量经济模型中

9、常见的问题,只是影响程度强弱有所不同。二是数据的收集和计算方法。比如说,抽样限于总体中多个回归元取值的一个有限制的范围内。三是模型设定偏差。比如说,在解释变量的范围很小情况下,在回归方程中添加多项式。,普通最小二乘假设的违背,若模型存在多重共线性,则在金融计量中造成一系列后果,主要包括:一是参数估计值不准确,同时t值变小,得出错误结论。二是无法区分单个变量对被解释变量的影响作用。三是变量的显著性检验失效。,普通最小二乘假设的违背,(二)多重共线性检验1系数判定法。从经济理论上知道某个解释变量对因变量有重要影响,同时决定系数很大,如果模型中全部或部分参数的t检验不显著,一般就怀疑是多重共线性所致

10、。2相关系数矩阵法。做出各个解释变量的相关系数矩阵,如果相关系数在0.8以上,则可以初步判定存在多重共线性。但是,应该注意的是,较高的相关系数只是判断多重共线性的充分条件,并非必要条件。,普通最小二乘假设的违背,3.容忍度与方差膨胀因子检验法方差膨胀因子VIF可以用来测度模型的解释变量之间是否多重共线性。与方差膨胀因子联系的容忍度指标,也可以用检测多重共线性问题。容忍度的定义为:根据一般经验,当 或 时,存在轻度多重共线性;当 或 时,存在中等程度的多重共线性;当 或 时,存在严重多重共线性。,普通最小二乘假设的违背,4逐步回归判别法。以Y为被解释变量逐个引入解释变量,构成回归模型并进行参数估

11、计,根据决定系数的变化决定引入的变量是否能够加入到模型中。如果决定系数变化显著,则新引入的解释变量是一个独立的解释变量;如果决定系数变化不显著,则说明新引入的解释变量不显著,或是与现有的解释变量存在着共线性。,普通最小二乘假设的违背,(三)多重共线性的修正与处理在计量经济模型中,为了全面反映各方面的影响因素,总是尽量选取被解释变量的所有影响因素。如果模型的目的只是进行预测,只要模型的决定系数较高,能正确映不同解释变量的总影响,且解释变量的关系在预测期内没有显著的结构性变化,则可以忽略多重共线性的问题。但是,如果要区分每个解释变量的单独影响,应用模型进行结构分析,则要消除多重共线性的影响。可以考

12、虑以下做法:一是剔除引起共线性的变量。二是变换模型的形式。三是增加样本容量。,广义矩模型,第二节 广义矩模型一、广义矩介绍广义矩(generalized method of moments,GMM)是一个稳健型估计,因为它要求扰动项的准确分布信息,允许随机误差项存在异方差和序列相关,所以得到的参数估计比其他参数估计方法更符合实际。可以证明,GMM包容了许多常用的估计方法,普通最小二乘法、广义最小二乘法和极大似然法都是它的特例。,广义矩模型,二、广义矩方法(一)矩估计方法(MM)广义矩估计方法是矩估计方法的一般化形式。矩估计是基于实际参数满足一定矩条件而形成的一种参数估计方法。给定一组随机变量,

13、,和一组参数,是k维列向量,代表k个解释变量;是一个k维列向量,代表k个待定参数。假定x和 存在函数关系,且=0,真实值 是这个方程式唯一的解。=0称为母体矩条件,相对应的样本矩条件为=0,如果rrank()=k;那么该齐次方程组可以得到唯一解,其解即为估计量。我们可以证明在满足一系列前提条件下,具有一致性和渐进正态性,广义矩模型,(二)广义矩估计(GMM)在上面对矩估计方法的介绍中,我们注意到母体矩条件=0的解是唯一的,这是因为 rrank()=k,k是参数个数,且这个解就是参数真实值。但是在实际情况中,矩约束条件个数r常常大于参数个数k,即出现“过度确认”问题,此时方程组会产生无穷多个解,

14、由此得到的估计量无法收敛到参数真实值,原来的方法失效,于是Hansen提出了广义矩估计方法。其基本思想是为r个条件赋以不同的权重,选取一个最优权重矩阵W*,使得r个母体矩条件得到最大程度的满足,然后对目标函数J()极小化,求得参数的估计量。,广义矩模型,(三)对GMM估计量的一致性和渐进正态性的证明1、关于GMM估计量的一致性的证明2、关于GMM估计量的渐进正态性的证明,广义矩模型,(四)GMM应用的说明GMM方法的优势在于建模分析时可以考虑尽量多的变量,但是经过变量的重新组合后,回归方程中需要被估计的参数仍然在较少的水平。因此,按照计量经济学的相关原理可知,这种方法能够提高估计的精确性和模型

15、的可信性。,广义矩模型,三、利用Eviews软件进行广义矩估计利用Eveiws软件进行GMM估计,需要在方程设定窗口的估计方法中选择GMM。在方程说明对话框中的工具变量列表(Instrument list)中。列出工具变量名。如果要保证GMM估计量可识别,工具变量个数不能少于被估计参数个数。常数会自动被Eviews加入工具变量表中。,面板数据(panel data)模型,第三节 面板数据(panel data)模型一、面板数据模型及其优点“面板数据”(Panel Data),是用来描述对某横截面单位集合所进行的跨时多重观察。这种多重观察既包括对样本单位在某一时期(时点)上多个特性进行观察,也包

16、括对该样本单位的这些特性在一段时间的连续观察,连续观察所得到的数据集被称为面板数据。面板数据分析方法相对于横截面数据分析方法和时间序列分析方法,其优势主要在以下几点:第一,能够更准确地估计模型参数;第二,相对单纯的横截面数据分析方法和时间序列分析方法,面板数据能更准确的捕捉人的复杂行为;第三,面板数据的计算和统计推论更简单。,面板数据(panel data)模型,二、面板数据的估计模型面板数据估计模型分为静态模型和动态模型。静态模型可分为变截距和变系数两种模型,这两种又可再分别细分为固定效应和随机效应两类。动态模型则更为复杂,进一步考虑了时间上的滞后等情况。,面板数据(panel data)模

17、型,(一)静态模型1、基本原理 面板数据模型同时考虑截面因素和时间因素,它的基本方程形式为:其中,是因变量,是解释变量,是k维参数向量,t=1,2,T,i=1,2,N,j=1,2,K 分别表示时间,横截面,解释变量。是截距项,是随机误差项,,面板数据(panel data)模型,为了更简洁的表达这个模型,我们记则模型可以改写为一个简洁的形式,面板数据(panel data)模型,由 和 的不同,可以把模型分成以下三大类(1)无个体影响不变系数模型这个模型中 为一个不变的常数,对任何i。也是一个不变的参数向量。这实际上是将各个体成员时间序列上的数据堆在一起产生模型,这就是经典回归模型。所用的模型

18、估计方法即为最小二乘法,该模型也被称为联合回归模型。对于这个简单的模型,我们不再做讨论。,面板数据(panel data)模型,(2)变截矩模型这个模型中,系数向量 不变。这表示个体成员之间不存在结构上的差异。同时根据截距项 的不同,我们又可以进一步分类:如果 是一个常数,那么这是一个固定效应变截矩模型,表示个体成员之间存在固定差异;如果 是一个随机变量,那么这是一个随机效应变截矩模型。,表示个体间差异是不确定的。,面板数据(panel data)模型,(3)变系数模型这个模型中,随着不同的横截面而不同,表明个体成员之间存在结构上的差异。根据 是固定的参数向量还是随机变量,又可以分为固定效应变

19、系数模型和随机效应变系数模型,当样本数据包含的个体成员是研究总体的全部时,用固定效应分析比较合适,当样本数据包含的个体成员只是研究总体一小部分或者要根据样本来进一步推测总体,在这种情形下,我们更适合用随机效应模型,即参数是跨个体成员的随机分布。,面板数据(panel data)模型,2、固定效应变截距模型该模型假定个体成员间的差异是确定性的,即截距项是一个常数,此时模型的基本形式为:记 则另计 则模型变为,面板数据(panel data)模型,3、随机效应变截矩模型该模型假定个体成员之间差异是不确定的,截距项 是一个随机变量,这里我们要对 增加一些假设条件:;模型为:其中,。上式可转变为:其中

20、,。可得到方差:,面板数据(panel data)模型,4、固定效应变系数模型该模型假定各体成员间存在着结构性的差异,体现在 不再是不变的系数向量,而是随着不同的横截面而不同,同时 又是固定的(即 是一个常系数向量),这就是所谓的固定系数模型。,5、随机效应变系数模型该模型假定个体成员间不仅存在结构性差异(变化),而且 体现为跨截面的随机分布,往往在样本数据远小于研究总体时应用的模型。这里,是一个随机变量,我们假设,其中 代表了均值部分,是随机变量。于是,模型可写为:其中,,面板数据(panel data)模型,(二)动态模型1、模型介绍当我们考虑前期变量的滞后影响时,就发展成了动态面板模型。

21、理论上讲,动态面板可以纳入各种时间序列模型,这里为了说明动态面板模型的基本原理和估计技术,我们考虑一个简单又不失实用性的例子,模型如下:这是一个因变量滞后一期的模型,i=1,2,n;t=1,2,T;且为了保证平稳性,|k|1。在这个模型中,解释变量和扰动项可能存在相关性,同时截面间有依赖性,可能是固定效应也可能是随机效应,因而如果仍然使用标准的静态面板模型中的估计方法,则得到的结果将不是一致估计量。,2、运用GMM方法对动态面板模型估计参数GMM方法的实质是根据用样本矩条件代替母体距条件,并通过设定权重矩阵,使样本矩加权距离最小。针对上述动态模型,我们首先要设定选取工具变量,使之与扰动项不相关

22、,来构造母体矩条件。,实证案例3-2 关于东亚国家金融结构与经济增长关系的动态面板检验刘红忠和郑海青(2006)运用东亚国家的动态面板数据结构,使用GMM方法来估计,得出了金融结构与经济增长之间的关系。他们建立的动态面板方程为,y表示人均GDP作为经济增长的指标,解释变量X中包括了(1)金融结构指标:结构规模指标,结构行为指标,结构效率指标,(2)控制变量:物价水平,开放度水平,政府支出占GDP比重。表示各国家的个体效应。,离散因变量模型应用,第四节 离散因变量模型应用对于离散型因变量,使用普通最小二乘模型是不适宜的,建议对于此类因变量使用非线性函数。事件发生的条件概率 与 之间的非线性通常单

23、调函数,即随着 的增加 单调增加,或者随着的 减少 单调减少。一个自然的选择便是在值域(0,1)之间存在着一条S形曲线。这样,在 在趋向负无穷时有 趋向于0,在 在趋向正无穷时有 趋向于1。这样的曲线类似于一个随机变量的累积分布曲线。在离散型因变量分析中有多种模型,最常用的就是Logistic模型和Probit模型。,离散因变量模型应用,一、logistic模型Logistic模型,即逻辑模型是由Verhulst在1945年提出,最早被用来描述生物生长规律(逻辑成长率)。现在已经在经济与金融计量中得到广泛应用。它的具体形式为:,这一函数表达的是一条S曲线。,逻辑曲线,离散因变量模型应用,逻辑模

24、型的估计,由于式中,称为机会差异比,即所研究事件“发生”与“不发生”的概率之比。,离散因变量模型应用,二、Probit模型当我们用逻辑分布函数去拟合S曲线时,得到Logit模型,而当我们用正态分布函数去拟合S曲线时,而得到Probit模型。Probit模型的具体形式为:将其转化为线性模型,则为:,离散因变量模型应用,在设定模型之后,我们要对模型的参数 进行估计。对参数估计方法采用的是极大似然估计法。由于Logit模型或Probit模型实际上都是非线性回归模型,因此回归模型的系数不能像普通线性回归那样理解为对因变量的解释程度,而只能从符号上判断解释变量增加引起的相应变量的出现某种结果的概率增减。,离散因变量模型应用,三、离散因变量模型的Eviews实现Eviews软件提供了简洁方便的离散因变量模型的程序。在Equation Estimation对话框内,提供了Binary估计方法,即Probit、Logit和Extremevalue(极值)三种估计方式。在确定Binary的估计方式后,我们键入二元因变量的名字,然后键入回归项。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号