《计量经济学4.3多重共线性.ppt》由会员分享,可在线阅读,更多相关《计量经济学4.3多重共线性.ppt(42页珍藏版)》请在三一办公上搜索。
1、4.3 多重共线性,Multi-Collinearity,一、多重共线性的概念二、实际经济问题中的多重共线性三、多重共线性的后果四、多重共线性的检验五、克服多重共线性的方法六、案例*七、分部回归与多重共线性,4.3 多重共线性,一、多重共线性的概念,对于模型 Yi=0+1X1i+2X2i+kXki+i i=1,2,n其基本假设之一是解释变量是互相独立的。,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性(Multicollinearity)。,如果存在 c1X1i+c2X2i+ckXki=0 i=1,2,n 其中:ci不全为0,则称为解释变量间存在完全共线性(perfect mult
2、icollinearity)。,如果存在 c1X1i+c2X2i+ckXki+vi=0 i=1,2,n 其中ci不全为0,vi为随机误差项,则称为 近似共线性(approximate multicollinearity)或交互相关(intercorrelated)。,在矩阵表示的线性回归模型 Y=X+中,完全共线性指:秩(X)k+1,即,中,至少有一列向量可由其他列向量(不包括第一列)线性表出。,如:X2=X1,则X2对Y的作用可由X1代替。,注意:完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。,二、实际经济问题中的多重共线性,一般地,产生多重共线性的主要原因有以下
3、三个方面:(1)经济变量相关的共同趋势 时间序列样本:经济繁荣时期,各基本经济变量(收入、消费、投资、价格)都趋于增长;衰退时期,又同时趋于下降。横截面数据:生产函数中,资本投入与劳动力投入往往出现高度相关情况,大企业二者都大,小企业都小。,(2)滞后变量的引入,在经济计量模型中,往往需要引入滞后经济变量来反映真实的经济关系。例如,消费=f(当期收入,前期收入)显然,两期收入间有较强的线性相关性。,(3)样本资料的限制,由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。一般经验:时间序列数据样本:简单线性模型,往往存在多重共线性。截面数据样本:问题不那么严重,
4、但多重共线性仍然是存在的。,二、多重共线性的后果,1、完全共线性下参数估计量不存在,如果存在完全共线性,则(XX)-1不存在,无法得到参数的估计量。,的OLS估计量为:,例:对离差形式的二元回归模型,如果两个解释变量完全相关,如x2=x1,则,这时,只能确定综合参数1+2的估计值:,2、近似共线性下OLS估计量非有效,近似共线性下,可以得到OLS参数估计量,但参数估计量方差的表达式为,由于|XX|0,引起(XX)-1主对角线元素较大,使参数估计值的方差增大,OLS参数估计量非有效。,仍以二元线性模型 y=1x1+2x2+为例:,恰为X1与X2的线性相关系数的平方r2,由于 r2 1,故 1/(
5、1-r2)1,多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor,VIF),当完全不共线时,r2=0,当近似共线时,0 r2 1,当完全共线时,r2=1,,3、参数估计量经济含义不合理,如果模型中两个解释变量具有线性相关性,例如 X2=X1,这时,X1和X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。1、2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。,4、变量的显著性检验失去意义,存在多重共线性时,参数估计值的方差与标准差变大,容易使通
6、过样本计算的t值小于临界值,误导作出参数为0的推断,可能将重要的解释变量排除在模型之外,5、模型的预测功能失效,变大的方差容易使区间预测的“区间”变大,使预测失去意义。,注意:,除非是完全共线性,多重共线性并不意味着任何基本假设的违背;因此,即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。问题在于,即使OLS法仍是最好的估计方法,它却不是“完美的”,尤其是在统计推断上无法给出真正有用的信息。,多重共线性检验的任务是:(1)检验多重共线性是否存在;(2)估计多重共线性的范围,即判断哪些变量之间存在共线性。,多重共线性表现为解释变量之间具有相关关系,所以用于多重共线性的检验
7、方法主要是统计方法:如判定系数检验法、逐步回归检验法等。,三、多重共线性的检验,1、检验多重共线性是否存在,(1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说明两变量存在较强的多重共线性。,(2)对多个解释变量的模型,采用综合统计检验法,若 在OLS法下:R2与F值较大,但t检验值较小,说明各解释变量对Y的联合线性作用显著,但各解释变量间存在共线性而使得它们对Y的独立作用不能分辨,故t检验不显著。,2、判明存在多重共线性的范围,如果存在多重共线性,需进一步确定究竟由哪些变量引起。(1)判定系数检验法 使模型中每一个解释变量分别以其余解释变量为解
8、释变量进行回归,并计算相应的拟合优度。如果某一种回归 Xji=1X1i+2X2i+LXLi的判定系数较大,说明Xj与其他X间存在共线性。,具体可进一步对上述回归方程作F检验:,式中:Rj2为第j个解释变量对其他解释变量的回归方程的决定系数,若存在较强的共线性,则Rj2较大且接近于1,这时(1-Rj2)较小,从而Fj的值较大。因此,给定显著性水平,计算F值,并与相应的临界值比较,来判定是否存在相关性。,构造如下F统计量,在模型中排除某一个解释变量Xj,估计模型;如果拟合优度与包含Xj时十分接近,则说明Xj与其它解释变量之间存在共线性。,另一等价的检验是:,(2)逐步回归法,以Y为被解释变量,逐个
9、引入解释变量,构成回归模型,进行模型估计。根据拟合优度的变化决定新引入的变量是否独立。如果拟合优度变化显著,则说明新引入的变量是一个独立解释变量;如果拟合优度变化很不显著,则说明新引入的变量与其它变量之间存在共线性关系。,找出引起多重共线性的解释变量,将它排除出去。以逐步回归法得到最广泛的应用。注意:这时,剩余解释变量参数的经济含义和数值都发生了变化。,如果模型被检验证明存在多重共线性,则需要发展新的方法估计模型,最常用的方法有三类。,四、克服多重共线性的方法,1、第一类方法:排除引起共线性的变量,2、第二类方法:差分法,时间序列数据、线性模型:将原模型变换为差分模型:Yi=1 X1i+2 X
10、2i+k Xki+i可以有效地消除原模型中的多重共线性。,一般讲,增量之间的线性关系远比总量之间的线性关系弱得多。,例如:,由表中的比值可以直观地看到,增量的线性关系弱于总量之间的线性关系。,进一步分析:Y与C(-1)之间的判定系数为0.9988,Y与C(-1)之间的判定系数为0.9567,3、第三类方法:减小参数估计量的方差,多重共线性的主要后果是参数估计量具有较大的方差,所以 采取适当方法减小参数估计量的方差,虽然没有消除模型中的多重共线性,但确能消除多重共线性造成的后果。例如:增加样本容量,可使参数估计量的方差减小。,*岭回归法(Ridge Regression),70年代发展的岭回归法
11、,以引入偏误为代价减小参数估计量的方差,受到人们的重视。具体方法是:引入矩阵D,使参数估计量为,其中矩阵D一般选择为主对角阵,即 D=aI a为大于0的常数。,(*),显然,与未含D的参数B的估计量相比,(*)式的估计量有较小的方差。,六、案例中国粮食生产函数,根据理论和经验分析,影响粮食生产(Y)的主要因素有:农业化肥施用量(X1);粮食播种面积(X2)成灾面积(X3);农业机械总动力(X4);农业劳动力(X5),已知中国粮食生产的相关数据,建立中国粮食生产函数:Y=0+1 X1+2 X2+3 X3+4 X4+4 X5+,1、用OLS法估计上述模型:,R2接近于1;给定=5%,得F临界值 F
12、0.05(5,12)=3.11 F=638.4 15.19,故认上述粮食生产的总体线性关系显著成立。但X4、X5 的参数未通过t检验,且符号不正确,故解释变量间可能存在多重共线性。,(-0.91)(8.39)(3.32)(-2.81)(-1.45)(-0.14),2、检验简单相关系数,发现:X1与X4间存在高度相关性。,列出X1,X2,X3,X4,X5的相关系数矩阵:,3、找出最简单的回归形式,可见,应选第1个式子为初始的回归模型。,分别作Y与X1,X2,X4,X5间的回归:,(25.58)(11.49)R2=0.8919 F=132.1 DW=1.56,(-0.49)(1.14)R2=0.0
13、75 F=1.30 DW=0.12,(17.45)(6.68)R2=0.7527 F=48.7 DW=1.11,(-1.04)(2.66)R2=0.3064 F=7.07 DW=0.36,4、逐步回归,将其他解释变量分别导入上述初始回归模型,寻找最佳回归方程。,回归方程以Y=f(X1,X2,X3)为最优:,5、结论,*七、分部回归与多重共线性,1、分部回归法(Partitioned Regression),对于模型,在满足解释变量与随机误差项不相关的情况下,可以写出关于参数估计量的方程组:,将解释变量分为两部分,对应的参数也分为两部分:,如果存在,则有,同样有,这就是仅以X2作为解释变量时的参数估计量。,这就是仅以X1作为解释变量时的参数估计量,2、由分部回归法导出,如果一个多元线性模型的解释变量之间完全正交,可以将该多元模型分为多个一元模型、二元模型、进行估计,参数估计结果不变;实际模型由于存在或轻或重的共线性,如果将它们分为多个一元模型、二元模型、进行估计,参数估计结果将发生变化;,严格地说,实际模型由于总存在一定程度的共线性,所以每个参数估计量并不 真正反映对应变量与被解释变量之间的结构关系。,当模型存在共线性,将某个共线性变量去掉,剩余变量的参数估计结果将发生变化,而且经济含义有发生变化;,