Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx

上传人:李司机 文档编号:6789895 上传时间:2024-02-21 格式:DOCX 页数:53 大小:813.89KB
返回 下载 相关 举报
Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx_第1页
第1页 / 共53页
Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx_第2页
第2页 / 共53页
Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx_第3页
第3页 / 共53页
Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx_第4页
第4页 / 共53页
Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx》由会员分享,可在线阅读,更多相关《Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx(53页珍藏版)》请在三一办公上搜索。

1、FuelCellHybridDriveTrainMasterThesisinEnergyEngineeringJanuary2021PatrykKinnSupervisors:JoachimLindstromAzraSelimovic1.arsBackstromExaminatior:RobertEklundAbstractThisthesispresentsafuelcellhybriddrivetrainstudyofa26tondistributiontruckregardingthefuelconsumption.Theinvestigationismadeusingamodelimp

2、lementedinSimulink.TheconceptvehicleisaVolvoFM9,wheretheconventionaldieselpowertrainisreplacedbyanelectricaldrivesystem.TheelectricalpropulsionmotorispoweredbyaprotonexchangemembranefuelcellassistedbyaLi-ionpoweroptimisedbattery.Thepowerratingsoftheinvestigatedfuelcellsarebetween150kWand350kWandthei

3、nvestigatedbatterycapacitiesrangefrom4.5kWhto22.6kWh.Twodrivecycles,whereonerepresentsurbandistributionwithnoroadinclineandtheotherrepresentssuburbandistributionincludingroadinclineareused.Byimplementingthreedifferentpowercontrolstrategies,itisshownthatthefuelconsumptioncanbereducedbyupto56%compared

4、totheconventionaldieselreferencevehicle.Theurbandistributiondrivecycleisfoundmoresuitableforthefuelcellvehicleapplication.A250kWfuelcelland13.6kWhbatteryconfigurationissuggestedfortheurbandistributiondrivecycle,reducingthefuelconsumptionby53%.Forthesuburbandistributiondrivecyclethesuggestedconfigura

5、tionconsistsofa350kWfuelcellanda17.8kWhbattery,reducingthefuelconsumptionby25%.AcknowledgementsThereareseveralpeoplethatIwouldliketomentionandthankexplicitlyfortheircontributionsduringthisthesiswork.Thesepeopleare: JoachimJindstromwhosupervisedmeandcontributedgreatlybyhisknowledgeandexperiencewithin

6、thefieldofelectricmachines.Iamgratefulforhiswarm,experiencedandopenmindedguidanceduringtheentireworkingprocessandsupportduringthefinalisationofthereport. AzraSelimovic,foransweringthatveryphonecallduringhertimeabroadthatledtotheworkonthisthesisandforinitiatingthisproject.Iappreciateheradviceduringmy

7、work. AndreasBoden,whotogetherwhitAzrainitiatedthisprojectandhandleditovertotheexperiencedguidanceofJoachim. PaulAdamswhocontributedwithexpertiseonissuesregardinghydrogenstorageandtheEnglishlanguage. JensGrootwhoprovidedthebatterymodelandpatientlyansweredallmyquestions. MikaelHolber,forcompanionship

8、andinterestingconversationsaboutfuelcelltechnology,martialartsandargentinetango. Theentiregroup6120forthewarmwelcomingIreceived,forcontinuouslyansweringmyquestionsandforgenerouslyprovidingabroadspectrumofexpertise.NomenclatureAA/FIwheelgSJ-IhHEVICEI-SAM1wheelioK1.HVdiesel1.HVh2IfactorMMH2MairmFrontA

9、reaofthevehicleTafelequationconstantVehicleaccelerationFuelcellstackareaDragcoefficientRollingfrictionElectricalVehicleFaradayconstantFuelCellVehicleDragforceForceduetomomentofinertiaofthewheelsForceduetogravityForceduetorollingresistanceSumoftheexternalforcesTractionforceAccelerationofgravityGibbsf

10、reeenergyTotalhydrogenconsumptionHybridElectricVehicleInternalCombustionEngineIntegratedStarterAlternatorMotorMomentofinertiaofthewheelsMomentofinertiaofthemotorCurrentdensityExchangecurrentdensitySpecificheatratio1.owerheatingvalueofdiesel1.owerheatingvalueofhydrogen1.engthfactorVehicleMassMolarmas

11、sofhydrogenMolarmassofairMasstransportconstantmMasstransportconstantnNumberofcellsCompressorinletpressureCompressoroutletpressureCompressorpowerPowerenteringthefuelcellPowerdeliveredbythefuelcellMotorpowerMaximummotorpowerWheelpowerAmbientpressurePartialpressuresofhydrogenPartialpressuresofwatervapo

12、urSaturationpressureofwaterP2RrrfSOCTTwheellllTm,naxTinTmodeKniaxVocVoOCVVbaseVmaxXgearS0CVohinactVmassTfc,system(icdciselo9h2PartialpressuresofoxygenGasconstantWheelradiusArea-specificresistanceStateofchargeTemperatureWheeltorqueMotortorqueMaximummotortorqueInlettemperatureMaximumoriginaloutputtorq

13、ueOpencircuitvoltageOpencircuitvoltageatstandardpressureandtemperatureVehiclespeedVehiclespeedcorrespondingtomotorbasespeedMaximumvehiclespeedGearratioDeltastareofchargeOhmicresistancelossesActivationlossesMasstransportationlossesFuelcellsystemefficiencyDC/DCconverterefficiencyIsentropicefficiencyEl

14、ectricefficiencyTotalmechanicalderivelineefficiencyInclineangleMolarflowofhydrogenairPairPdieselCOm(OnunotorCOtiuixtWheeICOwheeI(0wleelMolarflowofairAirdensityDieseldensityMotorspeedMaximummotorspeedMaximumwheelspeedWheelspeedWheelaccelerationTableofcontentIntroduction1Thefuelcellvehicle1Prerequisit

15、es3Purposeandgoal3Conceptvehicle3Dataandperformancespecification4Drivecycles4Sizing5Performance7Drivecycle10Themodelandcomponents11Thedriver11Thefuelcellsystem11Thefueltank12Thefuelcell13Thecompressor16Theauxiliaryload17Theelectricmotor17Thefinalgear19Thevehiclebody19Thebattery20Thecontroller20Contr

16、olstrategy20Powerdemand21Simulations21Batteryandfuelcellsizes21DeltaSOCcorrection22Performanceandfuelconsumption22Results24Performance24Fuelconsumption33Discussion43Performance43Fuelconsumption43General45Conclusions46Futurework47References48IntroductionTheemissionandfuelconsumptionfavourableoperatio

17、noftheHybridElectricVehicles(HEVs)haveresultedintremendouspopularityincreaseofthesevehiclesduringthelasttwodecays1.Theelectricvehicleishowevernotanewconceptandthemanufacturingofsuchvehiclesstartedasearlyasbefore1900.FerdinandPorsche,sfirsthybridvehicleproducedin1899wasforinstancepropelledbyfourwheel

18、-mountedelectricmotorswithaseriesdrivelinesolution1.Thelackofinsightinthefinitenatureandintheenvironmentalimpactofthefossilfuels,aswellasthefastdevelopmentoftheinternalcombustionengine(ICE)duringtheFirsWordWarandthelowfuelprices,pushedtheelectricvehiclesaside2.Sincethen,theICEvehicleshavedominatedth

19、eroadsandhavenowprobablydonethatfarlongerthananyofthosedrivingthemtodaycanremember.Theinfrastructure,performancedemands,manufacturingprocessandmanyotheraspectshavebeeninfluencedandformedbythisdominance.Nowhowever,whentheenvironmentalimpactofthetrafficcausedpollutionisbecomingvisibleandthefossilfuelr

20、eserveofthisplanetfadesrapidly,newpossibilitiestodevelopedalternativepowertrainconceptsarise.Thisdevelopmentmayevenbeconsideredasnecessaryifthefreedomofusingfastandflexiblepersonalandgoodstransportsarenottobeabandonedmeanwhiletheplanetsenvironmentispreservedforthefuturegenerations.Asubstantialamount

21、ofresearchanddevelopmenttime,aswellasfinancialmeansisnowinvestedbythemanufacturersandpoliticalorgansinordertomeetthedemandsfromaconstantlymoreawarepublic.Eveniflargeadvancehasalreadybeenmade,therearestillmanyaspectstobeconsideredandproblemstobesolvedregardingtheHEVsbeforetheycanbefullycommercialized

22、.Twosuchaspectsarethecostandperformanceofthesevehicles.Becauseeveniftheenvironmentalconcernhasbeenbroughttoattention,thecustomersmustbeabletoaffordtheproductandtheproductneedstofulfilitspurpose.Anotheraspectistheoriginofasubstitutionfuelanditsdistribution.Variousresearchanddevelopmentactivitieshaver

23、esultedinavarietyofdifferenthybridsolutions,fromtheelectricmotorassistedbicyclestomoreadvancedpluginhybridcarsandthefuelcellvehicles(FCV).ThisthesesaimstocontributetoageneraleffortofHEVstudybyinvestigatingthefuelconsumptionofafuelcellbaseddrivelinesolutionfora26tonnedistributiontruck.Thefuelcellvehi

24、cleWhenthereareatleasttwoformsofenergystoredonboardavehiclethatcanbeusedforpropulsionandiftheenergyinatleastoneofthecasesiselectric,suchavehiclequalifiestobecalledaHEV.SincethisisthecasefortheFCV,wherethepropulsionenergycanbetakenfromthehydrogensuppliedtothefuelcellorfromtheelectricenergystoredinthe

25、battery,thesevehiclescanberegardedasHEVs.ThedrivelineoftheHEVisusuallyoneofthreebasictypes.Onetypeistheseriesdrivelineimposingthatonlyoneenergyformisusedtopowerthepropulsion.Theothertwotypesaretheparallelandcomplexdrivelinesolutions2.Theparalleldrivelineimposethattwoenergyformscanbeusedatthesametime

26、andthecomplexdrivelineimposethatboththeseriesandparalleldrivelinesareimplementedandthatachoiceismadewhichsolutiontouseinacertainsituation.Allthesedrivelinesolutionshavetheirprosandconswhencomparedtooneanother.However,sincetheenergyusedtopowerthepropulsionmotoroftheFCViselectric,theseriesdrivelinesol

27、utionisonlyonestudiedinthefollowingwork.SincetheFCVispropelledbyelectricenergy,thistypeofvehiclepossesthesamepotentialofemissionfavourabletransportationasthebatterysourcedelectricvehicle(EV).Thefuelcellhowever,givesthebenefitofextendedtravelleddistanceforthesameorevensmallerbatterysize.Thisreduction

28、inbatterydependenceisdesirablesincethebattery,atpresent,canberegardedastheAchillesheelinallhybrids3duetoe.g.lowlifetimeandhighcost.Thefuelcelltechnologyhoweverintroducesotherchallengingaspects.Oneissueistheabsenceoffueldistributioninfrastructure,makingithardtocommercializethefuelcellvehicle.Todealwi

29、ththisproblemthereareseveraldemonstrationprojectsofhydrogenhighwaysaroundtheworldandongoingresearchonstoragepossibilities.Inasensethisissueispartiallyaddressedinthisthesis,wherethefuelconsumptionandstoragecapacityisinvestigated.Naturallyithastobekeptinmindthatforthisemissionfavourableconcepttobecome

30、reality,thehydrogenneedstobeproducedanddistributedinequallyemissionfavourableway.Intheidealcasealsothemanufacturingprocess,serviceandtherecyclingprocessallneedtobeemissionfavourable.EveniftheseissuesareofgreatimportanceandstronglyrelatedtotheenvironmentalbenefitsoftheFCVandothertypesHEVs,theyarenotc

31、onsideredinthistextandleftforotherinspiredinvestigatorsandfuturestudies.PrerequisitesInthissectionthepurposeandthegoalofthethesesarepresented.Theconceptvehicle,theperformancerequirementsandthedrivecycleschosenarealsopresented.Thefirstsubsectiondealwhitthepurposeandgoalandisfollowedbyamotivationofthe

32、vehicleselection.Thefollowingsubsectionsintroducethevehicledata,theperformancerequirementsandthedrivecycleschosenforthefuelconsumptionsimulations.PurposeandgoalThepurposeofthisthesisistoconductaprestudyonahydrogenbasedfuelcellserieshybriddrivetrainforamedium-heavydistributiontruck.Thefocusofthestudy

33、istosimulateandevaluatedifferentsystemlayoutsforthedrivetrainanddefineprosandconsforeachconceptdefinedregardingmainlythefueleconomy.Thebasiccasewillbeanequivalentconventionaldieseldrivenvehicle.Otherimportantpartsoftheworkaretodefineandscalethecomponentsofthesystemsuchashydrogenstorage,battery,elect

34、ricmachineandfuelcell.Importantaspectsherearetodefinethepowerbalancebetweenthefuelcell,electricmachineandthebattery.Thegoalwiththisthesisistodeliveramodeltakingmostoftheimportantaspectsofthedrivetrainintoaccount.Themodellevelshouldbeaccurateenoughtodeliverreliableresultsforbasicvehicleanalysis.There

35、sultsarecomparedwiththoseofaconventionaldrivetrainaswellasstateoftheartdiesel-electricparallelhybriddrivetrain.ConceptvehicleThevehiclechosenforthisstudyistheVolvoFM9illustratedinFigure1.Thevehiclechoiceisprimarymotivatedbytwofactors.Thefirstfactoristhelargeamountofreferencematerialandvehicledataspe

36、cifiedinthereportontheI-SAMproject4.Thereferencematerialincludesfuelconsumptionoftheconventionalversionofthisvehicle.ThesecondfactormotivatingthechoiceofthevehicleisthepossibilityofusingtheVolvoFM9forcitydeliveryapplications,whichwastheinitialproposalofthetheses.Duringtheliteraturestudyintheinitialp

37、artoftheprojectitwashoweverdiscoveredthatasimilarinvestigationhasalreadybeenperformedforalightdistributiontruck5.Beingnearlytwiceasheavyasthevehiclealreadyinvestigated(FL6),theVolvoFM9waschoseninordertocontributetotheresultsoftheexistinginvestigation.Figure1:TheVolvoFM6.Dataandperformancespecificati

38、onThephysicaldataofthevehiclearesummarizedinTable1.Table1:TheVolvoFM9dataWeight(loaded)26tonRollingfriction,Cr0.005N/NFrontarea,A9.7m2Dragcoefficient,Cd0.65Wheelradius,r0.492mAuxiliaryload4.4kWThefollowingperformancerequirementshavebeenchosenforthestudy:1.Cruisingability:Thevehicleshallbeabletocruis

39、eat100km/hatlevelground.2.Gradeability:Thevehicleshallbeabletocruiseat40km/hattheinclineof8.7%(5o).3.Acceleration:Thevehicleshallbeabletoperformmaximalaccelerationfromstandstillto100km/hatlevelground.Thevehicleshallbeabletoperformmaximalaccelerationfromstandstillto50km/hattheinclineof8.7%(5).Aswillb

40、eshownlateron,thegradeabilityrequirementisdemanding.ForcomparisonitcanbestatedthatthehighwayE6,whenpassingtheHaIlandsaseninSwedeninthesoutherndirection,hastheinclineof6%(3.43o).DrivecyclesTwodifferentdrivecycleshavebeenselectedforthestudy.Thesort3drivecycleandthesx365drivecycle.Thesort3drivecycleisa

41、syntheticcyclewithacompletelyflatroadtopologyduringtheentireduration.Itconsistsofanaccelerationsection,aconstantvelocitysection,adecelerationsectionandastandstillsectionrepeatedforthreedifferentconstantvelocities.Theconstantvelocitiesare30km/h,50km/hand60km/h.Duringonesimulationthisdrivecycleisdrive

42、ntentimes.Thesort3drivecycleisconsideredsuitableforcitydistribution4.Thesx365drivecyclecorrespondtoanactualroadintheneighbourhoodofHallerdtestgroundinSweden,itishillyandcontainsfewstops.Thesx365drivecycleisconsideredsuitableforsuburbandistribution4.DatasummeryforbothdrivecyclesispresentedinTable2.Th

43、ereferencespeedofthesort3cycleisshowninFigure2andthecorrespondingspeedofthesx365cycleisillustratedinFigure3,wheretheroadtopologyhasbeenincluded.ThefuelconsumptionofthereferencetruckandtheI-SAMtruckaregiveninTable3.Table2:DriVeCyCledaiaSUmmary4.sx365sort3Durations2150200Distancem356601450Stoptime(%7%

44、20%Averagespeedkmhl6026AveragespeedexcludedstopsknVh6549Maximalspeed(krnh9060RoutetopologyyesnoTable3:Fuelconsumptionofthereferencevehicle4.DrivecycleReferencetruckI-SAMtrucksort35.681/10km4.661/10kmsx3654.291/10km4.08(1/10kmFigure3:Speedandheightprofileofthesx365drivecycleApartfromthefactthatfuelco

45、nsumptionofthereferencevehicleforthesetwodrivecyclesisdocumented,thechoiceofsort3cycleismotivatedbythecitydeliverysuitabilitywhilethechoiceofsx365cycleismotivatedbythehillyroadtopologyandsuburbandrivingrepresentation.SizingTheinformationaboutthedrivecyclesincludesvelocityandaccelerationrequirementsa

46、swellastheslopeofthedrivewayduringtheentirecycle.Thisinformation,andtheperformancerequirementinformationstatedintheprevioussection,combinedwiththevehicledataandNewton,ssecondlowofmotioncanbeusedforanestimationoftheelectricmotorrequirementandthegearratio.TractionforceThefirststepinthissizingprocessis

47、thecomputationofthetractionforcethatisrequiredatthewheelsforpropulsionofthevehicle.AspostulatedbyNewtoninhissecondlowofmotion,themotionofthevehiclewilldependontheresultingforcefromallexternalforcesactingonthevehicle.TheseexternalforcesarethetractionforceFtr,therollingresistanceforceFrOM,thedragforceFdandthegravitationalforceFlllgx7.Whenthevehicleisacceleratingtherearealsoadditionalforcesduetothemomentofinertia.Onesuchforce,theforceFhvheelcorrespondingtothemomentofinertiaofthewheels,isincludedinthefo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号