《离子液体应用技术进展ppt课件.ppt》由会员分享,可在线阅读,更多相关《离子液体应用技术进展ppt课件.ppt(72页珍藏版)》请在三一办公上搜索。
1、离子液体应用技术进展Ionic Liquid Application Technology Progress,王少君大连工业大学,一、离子液体的多样化Diversified range of applications of ionic liquids(ILs),Main cations and anions described in literature,Properties of ionic liquids,Melting point;Volatility;Non flammability;Thermal and chemical stability;Conductivity and ele
2、ctrochemical window; The challenge here is still to design ILs with wide electrochemical window along with good electrical conductivity.Density;Viscosity; The design of less viscous ILs is still a challenge for many applications.Polarity;Toxicity and biodegradability;Surface tension.,For industrial
3、implementation, some IL properties must be investigated under real process conditions.,Typical polarity and volatility characteristics of alternative solvents,A widening range of ionic liquids availableILs with targeted properties (decrease viscosity and density).,New methimazole based Ils,Examples
4、of ILs with targeted functions,Cost-effective ILs,These Ils can contain a weakly basic anion and a cation formed from a tertiary amine and an exchangeable proton.Bio ILs,Protic ILs synthesised by direct protonation (X = NTf2, CF3SO3, CF3CO2, CH3SO3, HCOO, HSO4, H2PO3).,The case of protic bases (such
5、 as dialkylamines) has also been studied,N,N-dimethylethanolammonium formate ILs,ILs based dendrimer polymers base,J.-F. Huang, , J. Am. Chem. Soc. 127(2005) 12784,(Multi)-functional ionic liquidsAcid and basic ILs,Mono-charged diamine based ILs which incorporate Lewis basicity site (DABCO type) on
6、the cation with both thermal stability and low meltingpoint can be obtained when associated with NTf2 anion.,Examples of basic ILs,Chiral Ils,Examples of chiral ILs,Highly ordered mesoporous functional organosilicas incorporating chiral camphorsulfon- amide entities were synthesised by a hydrolysisp
7、olycondensation involving chiral imidazolium precursors and tetraethoxysilane (TEOS),Example of silica supported CIL.,Switchable-polarity solvents (SPS),Switchable Polarity Solvents (SPS).,ILs at the frontier between organic and inorganic materials a.Inorganic cations.,Two-steps formation of Ag base
8、d hydrophobic ILs (L=olefin or diolefin),b. Deep eutectic solvents (DES). Recently, some deep eutectic mixtures with properties similar to those of ILs, have been described. These mixtures can simply be obtained by mechanically mixing two different components with no emission and mass efficiency.,Ex
9、amples of deep eutectic solvents,Latest advances in the preparation and purification of ILs1.The different ways of ILs preparations,(1) Metathetic exchange of anion (path A);,(2) Neutralisation of base with Brnsted acids (path B) or direct alkylation of alkylimidazole (path C):,(3) The carbonate rou
10、te (path D):,A direct access to anion-functionalised ILs consists in the one-step ring-opening reaction of sultones.Direct access to functionalised ILs.,二、离子液体结构与性能关系及理论基础 Theoretical basis of ionic liquid structure and nature 1.DFT 研究氨基咪唑离子液体前驱体合成的SN2 反应机理,应用密度泛函理论( DFT ) 与广义梯度近似( GGA)相结合的方法进行研究,所有
11、计算在Material Studio DMol3 模块中完成。电子结构计算中采用自旋极化密度泛函进行全优化计算, 电子交换相关作用采用GGA 的PW91 泛函形式, 采用有效核势(ECP) 来描述核电子的行为, 以及包含极化函数的双精度数值基组( DNP) 来描述价电子行为. 自洽场收敛标准为2.72 10- 4 eV, 采用Hirshfeld 集局分布来分析电荷转移情况.几何构型优化中所有结构不加对称性限制, 并通过共轭梯度法则获得最低能量结构. 计算化学反应过渡态采用LST / QST 方法.过渡态通过虚频振动分析判断其合理性.,N-甲基咪唑与溴乙胺氢溴酸的分子构型,N-甲基咪唑与溴乙胺氢
12、溴酸的反应机理,溴乙胺氢溴酸分子构型转变过程能量变化 数据为键长/ nm,N( ) ) CH 3 咪唑与两种构型溴乙胺氢溴酸相互作用的结构变化图( a) Path 1; ( b) Path2; 数据为键长/ nm,不同N( ) 位取代基咪唑发生SN2反应时的计算结果,N( ) ) H ( a) 和N( ) ) CF3( b) 咪唑分别与溴乙胺氢溴酸构型 相互作用的结构变化数据为键长/ nm,结论,结果表明, 在一定温度下, 溴乙胺氢溴酸盐先转化为一种能量较高的中间体, 再与亲核试剂发生SN 2 亲核取代反应, 该结论与实验结果吻合. 亲核试剂中N( ) 原子的电负性对该SN2 亲核取代反应速率
13、具有显著影响: CH3 , H( 给电子基团) 为取代基时, 前者的速率常数较后者大3. 8倍, 它们均比以CF3 ( 吸电子基团) 为取代基时的反应速率常数大上103 个数量级。由此可知, 可以通过在N( ) 位连接不同的取代基来调整N( ) 原子的电负性从而控制反应的难易程度。,张爱宏等,DFT 研究 反应机理, 武汉大学学报( 理学版) ,第56卷第3期,2010年6月pp302 306,2.密度泛函论1-乙基3-甲基咪唑四氟硼酸盐离子液的结构和性质 Structures and atomic labeling of 1-buty-3-methylimidazolium tetraflu
14、oroborate (EMIMBF4) ion pair.,Optimized structures of EMIM+,BF4- and EMIMBF4,Optimized bond length of EMIM+,BF4- and EMIMBF4d(nm),Optimized bond length and dihedral angle of EMIM+,BF4- and EMIMBF4,Optimized atomic charges of EMIM+,BF4- and EMIMBF4,The computed IR spectra for EMIMBF4 at the B3LYP/6-3
15、1G(d) level,The computed IR spectra for EMIM+ at the B3LYP/6-31G(d) level,结论,先用Hyperchem软件构建分子3D模型并预优化,再用Gaussian03W程序中的密度泛函(DFT)法在B3LYP/631G(d)基组水平上计算EMIMBF4的最优化构型。 结果表明, EMIMBF4中的原子与阳离子中部分原子具有相互作用而形成氢键,氢键弱相互作用性质可由优化的离子对结构数据和计算的红外谱图数据所证明。在EMIMBF4离子对的形成过程中,存在电荷的转移,使红外谱有不同程度的红移,说明BF4-与EMIM+离子间有强烈的静电吸
16、引作用。因此, EMIMBF4离子液在氢键和静电吸引作用下形成的分子是这类离子液的结构特征。,郑燕升,密度泛函论结构和性质,算机与应用化学,第27卷第58期,2010年5月28日,pp699-702,三、IL的应用 (Applied of IL)1.Multiphasic IL systems,The IL-liquid/liquid-biphase concept (M=monomer, M-M=dimer, M-M-M=trimer).,Some challenges and opportunities of multiphasic systems,The ionic liquid con
17、taining the Co catalyst precursors can be recycled into the reaction section and reactivated under CO/H2 pressure,Co-catalysed hydroformylation of olefins. A new concept for catalyst recycle (1: reaction, 2: pressure/temperature decreasing, 3: separation section).,Use of scCO2 as the transport vecto
18、r for substrates and productsContinuous flow homogeneous catalysis using a supercritical fluidionic liquid biphasic system (reproduced by permission of the Royal Society of Chemistry,P.B. Webb, T.E. Kunene, D.J. Cole-Hamilton, Green Chem. 7 (2005) 373.,But it was also discovered that high reaction r
19、ates could be obtained only for alkenes exhibiting good solubility in ILs and under very high pressure, to make scCO2 a good solvent for the products. The solubility of alkenes in ILs depended considerably on the length of the alkyl chain on the ILs imidazolium cation. 1-octyl-3-methylimidazolium bi
20、s(trifluoromethyl) sulfonamide OMINTf2 was found to give optimum performance when associated with 1-alkyl-3-methylimidazoliumPh2P(3-C6H4SO3) as catalyst ligand,Demonstration of continuous catlytic performancesContinuous hydrosilylation loop reactor,N. Hofmann, Adv. Synth. Catal. 350 (2008) 2599,2.Su
21、pported ionic liquid phase system (SILP)1) ILs supported on solid inorganic solidPreparation of acidic IL anchored on silica,Supported Ionic Liquid Phase (SILP) catalysis concept for olefin hydroformylation. The IL is confined on the surface of silica through covalent anchoring,C.P. Mehnert,., J. Am
22、. Chem. Soc. 124(2002) 12932,Schematic representation of SILP: the IL is confined on the solid support by physisorption (example of the MeOH carbonylation),A. Riisager, , Chem. Commun. (2006) 994,The IL coating constitutes only a thin film which is confined to the surface ofthe solid by physisorptio
23、n.,2) ILs supported on hybrid organicinorganic material3) ILs supported on organic polymersPolystyrene supported ionic liquids (PSIL),3.Switchable polarity solventsSwitchable solvents,This concept has been applied recently as a post-treatment step in the alternating polymerization of cyclohexene oxi
24、de with CO2. The polymerization reaction is performed using PPN-N3 asco-catalyst and Cr(salen)Cl as catalyst under 35 bar of CO2 without solvent.,Alternating polymerization of cyclohexene oxide with CO2,Styrene polymerization in DBU/PrOH switchable solvent,L. Phan, D. , Ind. Eng. Chem. Res. 47 (2008
25、) 539,In that case, CO2 and N2 at 1 bar were used as polymer miscibility and immiscibility triggering agents. Interestingly, the molar ratio of DBU and 1-propanol was 1:2.5, the excess of 1-propanol reducing the viscosity of the polar form (757 cP) which then facilitates filtration of the polymer. T
26、his solvent can be used several times (4 cycles) with nevertheless the need for fresh solvent addition in order to compensate losses during filtration.,Example of supported switchable solvent system,V. Blasucci, , Chem. Commun. (2009) 116,Recently a new class of one-component, thermally reversible,
27、neutral to ionic liquid solvents were described. Its structure is based on siloxylated amines which introduce weak Lewis acid functionality (above). The ionic liquids produced under a CO2 atmosphere are reversed to their molecular precursors at moderate temperatures (around 120). This new switchable
28、 solvent system was applied to the recovery of alkanes from heavy crude oil. For the example described, a mixture containing 50% wt of crude oil in TESA (triethoxysilylpropylamine) is used. The single-phase homogeneous system obtained is then transformed by CO2 bubbling. The viscosity increases as t
29、he carbamate ionic liquid forms. Centrifugation is then needed to separate the purified crude oil (top phase) from the IL containing the oils impurities (bottom phase). Heating the IL phase up to 120 regenerates the TESA to its neutral form, which can then be recycled.,4.Thermoregulated Ils(温控离子液体)T
30、hermoregulated catalysis using perfluorinated solvent,Hydrosilylation of olefins with triethoxysilane (R=C6H5(styrene), R=C4H9(1-hexene), R=C6H13 (1-octene), R=C9H19 (1-undecene).,Thermoregulated ionic liquid catalytic process for olefin hydroformylation,5.Phase transfer catalysisMass transfer model
31、 for epoxidation in BMIPF6/water PTC system (Q+ = dialkylimidazolium cation; M = sodium; X-= hexafluorophosphate anion).,Enantioselective Michael addition of dimethyl malonate,Substitution of alkyliodide using a phosphonium salt as catalyst,四.Overview of industrial applications and economic issuesDi
32、mersol + Difasol package reaction: (1) Dimersol reactor(s), (2)Vaporisationcondensation, (3) Difasol reactor.,The main DifasolTM benefits can be summarised by the following main points: the overall yield in C8 octenes can be 10% higher than in the homogeneous process; the nickel consumption is less
33、than in the homogeneous process; no ionic liquid can be detected in the products; a much smaller reactor, operated with biphasic system, can give the same throughput of octenes.,ILs application in the biomass transformation into fuel and chemicals1.Processing of lignocellulosic and cellulosic materi
34、alsDirect solvent for dissolution of cellulose and sugars,The cellulose network (A: Cellulose chain and B: inter and intra H-bonds present in cellulose),Enzymatic hydrolysis of cellulose,A.P. Dadi, C.A. Schall, S. Varanasi, Appl. Biochem. Biotechnol. 136 (2007) 407,lignocellulose network.,Example of
35、 wood chips dissolution in EMIAc as the ionic liquid,M. Zavrel, , A.C. Spiess, Bioresour. Technol. 100 (2009)2580,2.Applications of the use of ILs in the dissolution of ligno-cellulosic materials.Hydrolysis of lignocellulose or cellulose remains a challengeSchematic lignocellulose hydrolysis,ILs use
36、d for catalytic hydrolysis of lignocellulose,C. Li, Z.K. Zhao, Adv. Synth. Catal. 349 (2007) 1847,Catalytic transformation of sugarsConversion of fructose to 5-hydroxymethylfurfural,H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597,Derivation of (poly)saccharidesResults of homoge
37、neous cellulose acetylation in ILs (acetic anhydride is used asreagent),(N. Kamiya, Biotechnol. Lett. 30 (2008) 10371040),3.Application to bioprocesses: biofuels productionA new route for enzymatic in situ saccharification in water-ionic liquid mixture,20%(V)IL=emim(Et)2PO4, cellulase activity is hi
38、ghest. At this condition, glucose formation was found to be approximately 2-fold higher than that of the aqueous solution.,4.在IL中微晶纤维素转化5-HMF,BmimHSO4:1g、CrCl3:0.4g 、4h、,BmimHSO4:1g、CrCl3:0.4g 、 120,120、4h,温度、时间对5-HMF生成与稳定的影响较重要,IL/cat.的用量具有一个恰当值,表明IL与cat.具有协同作用。,5.离子液体在锂电池中的应用,车用离子电池系统结构示意图,离子液体电解质
39、与锂离子电池正极材料的相容性,LiCoO2 正极在不同室温离子液体电解质中的电化学性质,S Seki , et al ,J . Phys. Chem. B ,2006 ,110 :1022810230,LiTFSI/DMPImTFSI 电解质中表现出更加优良的电化学性质,材料的首次放电容量达130mAh/g ,50 次循环后仍能保持93 %的容量,库仑效率稳定在99.5 %以上.,LiMnO4 在1mol/L LiTFSI/二甲基己基铵阳离子(TMHA) 和二(三氟甲基磺酰亚胺) 阴离子(TFSI) 组成的离子液体中的电化学性质,郑洪河等. 电化学,2005 ,3 :298303,尖晶石LiM
40、nO4电极在1mol/LLiTFSI/TMHATFSI 离子液体中的恒电流充放电曲线,尖晶石LiMnO4 在其中可以有效地进行嵌脱锂循环,首次放电容量108.2mAh/g ,库仑效率为91.4 % ,经过10 次电化学循环后并没有明显的容量衰减,库伦效率仍达90.2 %.,对比研究了LiCoO2 在EMI、三甲基丙基铵(TMPA) 、N-甲基-N-丙基吡啶(P13) 和N-甲基-N-丙基哌啶(PP13) 四种阳离子与三氟甲基磺酰亚胺(TFSI) 阴离子组成的离子液体电解质中的电化学性能.,H Sakaebe ,H Mastumoto. Electrochem. Commun. ,2003 ,5
41、 :594598,在C/10 倍率下LiCoO2 在不同哌啶类离子液体电解质中的电化学循环性能,PP13-TFSI 中0.1C倍率下放电,LiCoO2 的首次放电容量超过130mAh/g ,并具有优良的电化学循环性能,摩尔比为14 的LiTFSI 和乙酰胺制备的室温离子液体的电导率大于10-3 Scm-1 ,并具有较宽的电化学窗口,Y S Hu,et al . Electrochem. Commun. ,2004 ,6 :28 32,25 条件下MnO2 正极在不同电解质中的首次放电曲线,以此作为Li/MnO2电池电解质,MnO2首次放电平台为2.82V ,放电容量为243mAh/g ,与Ki
42、m 等报道的Li/1mol/LLiBF4 + EC:PC:DMEPMnO2电池中正极MnO2的首次放电平台为2.78V、放电容量为210mAh/g 相比,具有一定的优势.而且,在随后的循环实验中容量损失小,这表明离子液体与MnO2电极具有较好的相容性.,低廉的硫醚作为原料,开发了一系列新型基于不对称锍阳离子的离子液体电解液,不对称锍阳离子系列离子液体电解液,其中S112TFSI和S114TFSI的熔点均小于25,电导率与温度(4080)的关系在遵循Arrhenius方程,室温(25)时相对于Li/Li+的还原极限电位分别是1.0V和0.9V,氧化极限电位都是5.1V,电化学窗口约为4.1V左右,章正熙,新型离子液体电解液的设计与开发及在锂二次电池中的应用研究,上海交通大学博士学位论文,五.结论与展望 General conclusion and perspectives,离子液体应用技术的问题1.离子液体的场效应2.低成本离子液体的研发3.离子液体在生物制药/生物化工应用过程4.双亲性、双疏性的功能离子液体的制备 5.离子液体在光电化学过程中的应用 6.离子液体的工程放大规律 7.离子液体的回收利用新技术 8.离子液体在清洁化学及化工生产中的应用,谢谢,