《双曲线及其标准方程完整版ppt课件.ppt》由会员分享,可在线阅读,更多相关《双曲线及其标准方程完整版ppt课件.ppt(25页珍藏版)》请在三一办公上搜索。
1、2.3.1双曲线及其标准方程,1. 椭圆的定义是怎样的?,2. 引入问题:,新课引入,|MF1|+|MF2|=2a( 2a|F1F2|0),如图(A),,|MF1|-|MF2|=|F2F|=2a,如图(B),,由可得:,| |MF1|-|MF2| | = 2a (差的绝对值),|MF2|-|MF1|=|F1F|=2a,上面 两条合起来叫做双曲线,同学们:下面观看双曲线形成动画演示, 两个定点F1、F2双曲线的焦点;, |F1F2|=2c 焦距.,(1)2a2c ;,平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线.,(2)2a 0 ;,双曲线定义,思考:
2、,(1)若2a=2c,则轨迹是什么?,(2)若2a2c,则轨迹是什么?,说明,(3)若2a=0,则轨迹是什么?,| |MF1| - |MF2| | = 2a,(1)两条射线,(2)不表示任何轨迹,(3)线段F1F2的垂直平分线,求曲线方程的步骤:,双曲线的标准方程,1. 建系.,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系,2.设点,设M(x , y),则F1(-c,0),F2(c,0),3.列式,|MF1| - |MF2|=2a,4.化简,此即为焦点在x轴上的双曲线的标准方程,若建系时,焦点在y轴上呢?,看 前的系数,哪一个为正,则在哪一个轴上,2、双曲线的标准方程与
3、椭圆的标准方程有何区别与联系?,1、如何判断双曲线的焦点在哪个轴上?,问题,F(c,0),F(c,0),a0,b0,但a不一定大于b,c2=a2+b2,ab0,a2=b2+c2,双曲线与椭圆之间的区别与联系,|MF1|MF2|=2a,|MF1|+|MF2|=2a,F(0,c),F(0,c),1判断:(正确的打“”,错误的打“”)(1)在双曲线标准方程中,a,b,c之间的关系同椭圆中a,b,c之间的关系相同()(2)点A(1,0),B(1,0),若|AC|BC|2,则点C的轨迹是双曲线(),小试牛刀,D,A,7,方法归纳求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准
4、方程的形式,(先定位再定量)然后用待定系数法求出a,b的值若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx2ny21(mn0),通过解方程组即可确定m、n,避免了讨论,实为一种好方法,变式训练,变式训练,方法归纳双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件|PF1|PF2|2a(02a|F1F2|)的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应用,课后作业,作业: 课本第60页1、2、3、作业:练习册第66页1、2、,此课件下载可自行编辑修改,此课件供参考!部分内容来源于网络,如有侵权请与我联系删除!,