《概率论与数理统计教程(茆诗松)第4章ppt课件.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计教程(茆诗松)第4章ppt课件.ppt(12页珍藏版)》请在三一办公上搜索。
1、4.1 特征函数 4.2 大数定律 4.3 随机变量序列的两种收敛性 4.4 中心极限定理,第四章 大数定律与中心极限定理,4.4 中心极限定理,讨论独立随机变量和的极限分布, 并指出极限分布为正态分布.,4.4.1 独立随机变量和,设 Xn 为独立随机变量序列,记其和为,4.4.2 独立同分布下的中心极限定理,定理4.4.1 林德贝格勒维中心极限定理,设 Xn 为独立同分布随机变量序列,数学期望为, 方差为 20,则当 n 充分大时,有,应用之例: 正态随机数的产生; 误差分析,例4.4.1 每袋味精的净重为随机变量,平均重量为 100克,标准差为10克. 一箱内装200袋味精,求一箱味精的
2、净重大于20500克的概率?,解:,设箱中第 i 袋味精的净重为 Xi, 则Xi 独立同分布,,且 E(Xi)=100,Var(Xi) =100,,由中心极限定理得,所求概率为:,= 0.0002,故一箱味精的净重大于20500克的概率为0.0002. (很小),例4.4.2 设 X 为一次射击中命中的环数,其分布列为,求100次射击中命中环数在900环到930环之间的概率.,解: 设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,,且 E(Xi) =9.62,Var(Xi) =0.82,故,= 0.99979,4.4.3 二项分布的正态近似,定理4.4.2 棣莫弗拉普拉斯中心极限定理
3、,设n 为服从二项分布 b(n, p) 的随机变量,则当 n 充分大时,有,是林德贝格勒维中心极限定理的特例.,二项分布是离散分布,而正态分布是连续分布,所以用正态分布作为二项分布的近似时,可作如下修正:,注 意 点 (1),中心极限定理的应用有三大类:,注 意 点 (2),ii) 已知 n 和概率,求y ;,iii) 已知 y 和概率,求 n .,i) 已知 n 和 y,求概率;,一、给定 n 和 y,求概率,例4.4.3 100个独立工作(工作的概率为0.9)的部件组成一个系统,求系统中至少有85个部件工作的概率.,解:用,由此得:,Xi=1表示第i个部件正常工作, 反之记为Xi=0.,又
4、记Y=X1+X2+X100,则 E(Y)=90,Var(Y)=9.,二、给定 n 和概率,求 y,例4.4.4 有200台独立工作(工作的概率为0.7)的机床, 每台机床工作时需15kw电力. 问共需多少电力, 才可 有95%的可能性保证正常生产?,解:用,设供电量为y, 则从,Xi=1表示第i台机床正常工作, 反之记为Xi=0.,又记Y=X1+X2+X200,则 E(Y)=140,Var(Y)=42.,中解得,三、给定 y 和概率,求 n,例4.4.5 用调查对象中的收看比例 k/n 作为某电视节 目的收视率 p 的估计。 要有 90 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象?,解:用,根据题意,Yn表示n 个调查对象中收看此节目的人数,则,从中解得,Yn 服从 b(n, p) 分布,k 为Yn的实际取值。,又由,可解得,n = 271,例4.4.6 设每颗炮弹命中目标的概率为0.01, 求500发炮弹中命中 5 发的概率.,解: 设 X 表示命中的炮弹数, 则,X b(500, 0.01),0.17635,(2) 应用正态逼近:,P(X=5) = P(4.5 X 5.5),= 0.1742,