《第一章 三角形的证明 复习ppt课件.pptx》由会员分享,可在线阅读,更多相关《第一章 三角形的证明 复习ppt课件.pptx(37页珍藏版)》请在三一办公上搜索。
1、复习课件,第一章 三角形的证明,知识框架,三角形的证明,等腰三角形,等腰三角形的性质,等腰三角形的判定,勾股定理,等边三角形的性质,等边三角形的判定,直角三角形,直角三角形的性质,两个直角三角形全等的判定(HL),直角三角形的判定,等边三角形,勾股定理的逆定理,垂直平分线的性质,角平分线的性质,(4)_、底边上的中线和底边上的高互相重合,简称“三线合一”.,顶角平分线,(3)两个_相等,简称“等边对等角”;,底角,(2)轴对称图形,等腰三角形的顶角平分线所在的直线是它的对称轴;,一、等腰三角形的性质及判定,1.性质,(1)两腰相等;,要点梳理,2.判定,(1)有两边相等的三角形是等腰三角形;,
2、(2)如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简写成“_”).,等角对等边,二、等边三角形的性质及判定,1.性质,等边三角形的三边都相等;,等边三角形的三个内角都相等,并且每一个角都等于_;,是轴对称图形,对称轴是三条高所在的直线;,任意角平分线、角对边上的中线、对边上的高互相重合,简称“三线合一”.,60,2.判定,三条边都相等的三角形是等边三角形.,三个角都相等的三角形是等边三角形.,有一个角是60的_是等边三角形.,等腰三角形,(5)在直角三角形中,30的角所对的直角边等于斜边的一半.,直角三角形的性质定理1,直角三角形的两个锐角_.,互余,直角三角形的判定定理1,有两
3、个角_的三角形是直角三角形.,互余,三、直角三角形,勾股定理表达式的常见变形:a2c2b2, b2c2a2, . 勾股定理分类计算:如果已知直角三角形的两边是a,b(且ab),那么,当第三边c是斜边时,c_;当a是斜边时,第三边c_.,四、勾股定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 . 即:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有 .,平方,注意 只有在直角三角形里才可以用勾股定理,运用时要分清直角边和斜边,a2b2c2,五、勾股定理的逆定理 如果三角形的三边长a、b、c有关系:a2b2 ,那么这个三角形是直角三角形利用此定理判定直角三角形的
4、一般步骤:,(1)确定最大边;(2)算出最大边的平方与另两边的 ;(3)比较最大边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是 三角形到目前为止判定直角三角形的方法有:(1)说明三角形中有一个角是 ;(2)说明三角形中有两边互相 ;(3)用勾股定理的逆定理,平方和,直角,直角,垂直,注意 运用勾股定理的逆定理时,要防止出现一开始就写出a2b2c2之类的错误,c2,1互逆命题在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题叫做互逆命题2逆命题每一个命题都有逆命题,只要将原命题的条件改成 ,并将结论改成 ,便可以得到原命题的逆命题
5、,结论,条件,结论,条件,六、逆命题和互逆命题,3逆定理如果一个定理的逆命题经过证明是真命题,那么,它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的 定理注意 每个命题都有逆命题,但一个定理不一定有逆定理如“对顶角相等”就没有逆定理,逆,1.线段垂直平分线的性质定理: 线段中垂线上的点到线段两端点的距离相等.,2.逆定理: 到线段两端点的距离相等的点在线段的垂直平分线上.,七、线段的垂直平分线,3常见的基本作图(1)过已知点作已知直线的 ;(2)作已知线段的垂直 线,垂线,平分,4.三角形的三边的垂直平分线的性质:三角形的三边的垂直平分线相交于一点,且到三个顶点的距离相等.,1.性
6、质定理:角平分线上的点到角两边的距离相等.2.判定定理:在一个角的内部,到角两边距离相等的点在角的平分线.3.三角形的三条内角平分线的性质:三角形的三条内角平分线相交于一点,且到三边的距离相等.,八、角平分线的性质与判定,例1 如图所示,在ABC中,AB=AC,BDAC于D.求证: BAC = 2DBC.,【分析】根据等腰三角形“三线合一”的性质,可作顶角BAC的平分线,来获取角的数量关系.,考点讲练,证明:作BAC的平分线AE,交BC于点E,如图所示, 则,AB=AC, AEBC., 2+ ACB=90 .,BDAC, DBC+ ACB=90 ., 2= DBC., BAC= 2DBC.,等
7、腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形等边三角形的性质与判定应用也很广泛,有一个角是30的直角三角形的性质是证明线段之间的倍份关系的重要手段.,1. 如图,在ABC中,AB=AC时,(1)ADBC, _= _;_=_.(2) AD是中线,_; _= _.(3) AD是角平分线,_ _;_=_.,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,例2 在ABC中,已知BD是高,B90,A、B、C的对边分别是a、b、c,且a3,b4,求BD的长,解:B90,b是斜边,则在RtABC中,由勾股定理,得又SABC
8、bBD ac,,在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边上的高较为简便在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰,2已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25,D,例3 已知在ABC中,A,B,C的对边分别是a,b,c,an21,b2n,cn21(n1),判断ABC是否为直角三角形,解:由于a2b2(n21)2(2n)2n42n21, c2(n21)2 n42n21, 从而a2b2c2, 故可以判定ABC是直角三角形,运用勾股定理的逆定理判断一个三
9、角形是否是直角三角形的一般步骤:先判断哪条边最大;分别用代数方法计算出a2b2和c2的值(c边最大);判断a2b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形,3.已知下列图形中的三角形的顶点都在正方形的格点 上,可以判定三角形是直角三角形的有_,(2)(4),例4 判断下列命题的真假,写出这些命题的逆命题并判断它们的真假(1)如果a0,那么ab0;(2)如果点P到线段AB两端点的距离相等,那么P在线段AB的垂直平分线上,解:(1)原命题是真命题原命题的逆命题是:如果ab0,那么a0.逆命题为假(2)原命题是真命题原命题的逆命题是:如果P在线段AB的垂直平分线上,那么点P
10、到线段AB两端点的距离相等其逆命题也是真命题,4.写出下列命题的逆命题,并判断其真假:(1)若x=1,则x2=1;(2)若|a|=|b|,则a=b.,解:(1)逆命题:若x2=1,则x=1是假命题.(2)逆命题:若a=b,则|a|=|b|是真命题.,解: AD 是BC 的垂直平分线, AB =AC,BD=CD. 点C 在AE 的垂直平分线上, AC =CE,AB=AC=CE, AB+BD=DE.,例5 如图,AD是BC的垂直平分线,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?,5.如图,在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD
11、的周长等于13厘米,则ABC的周长是 .,A,B,D,E,C,18厘米,常常运用线段的垂直平分线的性质“线段垂直平分线上的点到线段两端的距离相等”进行线段之间的转换来求线段之间的关系及周长的和差等,有时候与等腰三角形的“三线合一”结合起来考查.,6.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有 (填序号)., ,例6 如图,在ABC中,AD是角平分线,且BD = CD, DEAB, DFAC.垂足分别为E , F
12、.求证:EB=FC.,【分析】先利用角平分线的性质定理得到DE=DF,再利用“HL”证明RtBDE RtCDF.,证明: AD是BAC的角平分线, DEAB, DFAC,, DE=DF, DEB=DFC=90 .,在RtBDE 和 RtCDF中,, RtBDE RtCDF(HL)., EB=FC.,8.ABC中, C=90, AD平分CAB,且BC=8,BD=5,则点D到AB的距离是 .,3,E,7. 如图,DEAB,DFBG,垂足分别是E,F, DE =DF, EDB= 60,则 EBF= 度,BE= .,60,BF,9. 如图所示,已知ABC中,PEAB交BC于点E,PFAC交BC于点F,
13、点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分BAC,并说明理由,解:AD平分BAC理由如下:D到PE的距离与到PF的距离相等,点D在EPF的平分线上12又PEAB,13同理,2434,AD平分BAC,P,例7 等腰三角形的周长为20cm,其中两边的差为8cm,求这个等腰三角形各边的长.,【分析】要考虑腰比底边长和腰比底边短两种情况.,解:若腰比底边长,设腰长为xcm,则底边长为(x-8)cm,根据题意得 2x+x-8=20, 解得 x= , x-8= ;若腰比底边短,设腰长为ycm,则底边长为(y+8)cm,根据题意得2y+y+8=20,解得y=4, y+8=12,
14、但4+4=812,不符合题意.故此等腰三角形的三边长分别为,分类讨论思想,10.等腰三角形的两边长分别为4和6,求它的周长.,解:若腰长为6,则底边长为4,周长为6+6+4=16;若腰长为4,则底边长为6,周长为4+4+6=14.故这个三角形的周长为14或16.,例8 如图,有一张直角三角形纸片,两直角边AC6 cm,BC8 cm,将ABC折叠,使点B与点A重合,折痕是DE,求CD的长,【分析】 欲求的线段CD在RtACD中,但此三角形只知一边,可设法找出另两边的关系,然后用勾股定理求解,方程思想,解:由折叠知:DADB,ACD为直角三角形 在RtACD中,AC2CD2AD2, 设CDx cm,则ADBD(8x)cm, 代入式,得62x2(8x)2, 化简,得366416x, 所以x 1.75, 即CD的长为1.75 cm.,勾股定理可以直接解决直角三角形中已知两边求第三边的问题;如果只知一边和另两边的关系时,也可用勾股定理求出未知边,这时往往要列出方程求解,11.如图,在矩形纸片ABCD中,AB=12, BC=5,点E在AB上,将DAE沿DE折 叠,使点A落在对角线BD上的点A 处,则AE的长为 .,谢 谢,