《高速铁路质量提升技术方案-现网优化技术方案(广东).docx》由会员分享,可在线阅读,更多相关《高速铁路质量提升技术方案-现网优化技术方案(广东).docx(30页珍藏版)》请在三一办公上搜索。
1、高速铁路现网优化技术方案中国移动通信集团广东有限公司2007年6月目录一、前言4二、研究背景52.1 铁路提速52.2 CRH简介15三、高速列车对现网质量的影响分析63.1穿透损耗63.2 覆盖信号强度需求63.2.1 手机在单小区内的最低信号强度需求63.2.2 考虑切换的最低信号强度63.2.3 小区覆盖半径73.3 相邻小区的重叠区域83.3.1 Idle 模式下的小区重选83.3.2 Active模式下的切换103.4 小结10四、高速铁路的优化策略114.1覆盖优化114.2 重选与切换算法优化114.3 专网覆盖与现网调整114.3.1专网覆盖与现网调整的相同点124.3.2 专
2、网覆盖与现网调整的差异124.3.3 专网覆盖与现网调整的技术特点分析124.3.4现网调整与专网覆盖的融合13五、现网覆盖优化技术145.1现网覆盖小区序列的整理145.2 GSM1800网的信号调整145.3 现网覆盖小区天线调整145.4分裂第四小区175.5 功分扇区185.6 功率放大器的应用205.7 新增宏基站建设方案225.8 直放站方案23六、基于现网结构的参数优化方法246.1 空闲模式参数优化246.2 切换相关参数优化266.3 其他相关参数优化28七、技术方案总结30八、引用30一、 前言2007年4月18日,中国铁路正式实施第六次提速,CRH动车组“和谐号”列车正式
3、开通,由于CRH车体密封性好、损耗高,列车速度快等原因,车厢内通信质量明显下降。为保证乘客的通信畅通和通信质量,特制定高速铁路现网优化技术方案。本方案立足于高速铁路现网的调整和优化,重点解决铁路提速后出现的接通率低和掉话等现象。方案所提及技术方案和关键技术均在广深铁路优化中得到应用,效果明显,表明此方案对于铁路提速后的现网优化工作建设具有指导性、实用性。关健字: 高速铁路、穿透损耗、小区重选、切换、网络优化二、 研究背景2.1 铁路提速随着城市经济的发展,铁路运输系统承担起越来越多的客流运送任务。自2007年4月18日起,中国铁道部将进行第6次列车提速。届时,列车时速将提升至200公里,而京哈
4、、京沪、京广、胶济等提速干线部分区段可达到时速250公里。2.2 CRH简介1在本次铁路提速的同时,铁道部引入了CRH这一新型列车,该列车全称为“中国高速铁路列车”,CRH是(ChinaRailwayHigh-speed)英文字母的缩写。该列车分为CRH1、CRH2、CRH3和CRH5这4个种类,其中,CRH1、2、5均为200公里级别(营运速度200KM/h,最高速度250KM/h)。 CRH3为300公里级别(营运速度330KM/h,最高速度380KM/h)。而CRH2具有提升至300KM级别的能力。三、 高速列车对现网质量的影响分析3.1穿透损耗CRH列车采用密闭式厢体设计,增大了车体损
5、耗。各种类型的CRH列车具有不同的穿透损耗,下表是上海公司对各类型车厢的穿透损耗的测试结果。 表1:各车型穿透损耗总结车型普通车厢(dB)卧铺车厢(dB)播音室中间过道(dB)综合考虑的衰减值T型列车121612K型列车13141614庞巴迪列车2424CRH2列车1010广深铁路目前行驶的CRH为CRH1型列车,采用欧洲庞巴迪动车组技术,全车无卧铺车厢, 广东公司的测试结果显示穿透损耗为14dB,比普通列车高7dB。3.2 覆盖信号强度需求3.2.1 手机在单小区内的最低信号强度需求根据理论计算,为了手机能发起和建立呼叫,需要的最低信号强度为:SSreq=MSsens+RFmarg+IFma
6、rg+BL其中:MSsens :手机接收机灵敏度、为-104dBmRFmarg :瑞利衰落(快衰落)余量,与“正常”移动的手机相比,快速衰落对高速移动的手机的影响很小,假设为0dBIFmarg :干扰余量2dBBL :人体损耗5dB因此,SSreq =-97dBm3.2.2 考虑切换的最低信号强度随着列车的运行、手机逐渐远离基站,服务小区的信号强度也在衰落。为了保证呼叫建立或者持续通话,手机要在接收的信号强度低于SSreq 前切换到新的小区。也就是说,车内的覆盖目标为:SSdesire= SSreq+ HOVmargin其中:SSreq :-97dBmHOVmargin: 切换时间内的信号衰减
7、余量,手机远离基站而产生的慢衰落。一次切换的最短时间包括:滤波器处理时间,我们建议高速铁路服务小区的测量报告滤波器长度设置为2,即1秒;解码BSIC的时间,平均1-2秒;切换执行时间,100ms级别,可以忽略不计。总共需约2-3秒,在这段时间内,列车行驶了70*3=210m,在离基站300米到1000米的距离内(目前现网铁路沿线站间距一般都小于2km),用户向远离基站的方向移动210米,信号衰减约在48dB左右,即HOVmargin8dB;因此,列车内SSdesire =-89dBm。而车外的信号强度设计目标SSdesign为:SSdesign= SSdesire +LNFmargin(o+i
8、)+TPL其中:LNFmargin(o+i):正态衰落余量,在市区、室内环境下取值,为13.1dB;TPL : Train Penetration Loss, 火车厢穿透损耗,14dBSSdesign-62dBm3.2.3 小区覆盖半径假设EIRP为51.1dBm(考虑了大多数基站的发射功率、馈线及跳线损耗,CDU-D,天线增益为13dBi),则最大允许的路径损耗为:Lpathmax =EiRP- SSdesign=51.1-(-61.9)= 113dBm根据GSM900无线传播模型,Lp= A - 13.82logHb+ (44.9 - 6.55logHb)logd - a(Hm)其中Lp为
9、路径损耗、Hb为基站高度(米)、Hm为手机高度(米)、d为手机到基站的距离(km)、a(Hm)=3.2*(log11.75Hm)2-4.97我们假定:基站高度30米、手机高度2米,市区环境A=146.8。可以算出小区半径d458m,站间距900m。若采用各种手段增加EIRP,站间距还可以增大,例如采用增益为18dBi的天线,EIRP可以达到56.5dBm,则d可以达到635米,站间距1270米。3.3 相邻小区的重叠区域手机在服务小区的信号强度衰落到一定程度,会触发小区重选(idle模式)或者切换(Active模式)过程,我们必须保证在手机顺利进入新小区之前,当前小区的信号不会进一步衰落到门限
10、值以下,否则空闲的手机可能进入No Service Mode(即脱网)、或者Active 模式的手机切换失败而掉话。因此需要控制重叠区域的大小,来保证重选或者切换的完成。RCELLACELLBSSdesire=-89dBmRoBAOSSA=-98dBmSSB=-98dBm3.3.1 Idle 模式下的小区重选我们的小区重选采用C1、C2法则。Idle模式手机接收信号的门限值为C10。目前铁路沿线小区的典型参数为ACCMIN=102,CCHPWR=33,CRO=0,TO=0,PT=0。而:C1=(RxLev - ACCMIN) max(CCHPWR - P, 0)上图是典型的小区重选过程所示。手
11、机在从CellA往CellB移动的过程中,一直在测量二者的信号强度,并计算各自C1、C2值。根据小区重选规则,若C2BC2A超过5秒,则重选到CELLB。在O点C2B=C2A。因此重叠区域的定义就是:列车从O点向CELLB行进5秒到达A点时,C1A还是大于0才不会脱网,反之亦然。根据上节设定的覆盖目标,在O点的信号强度为-89dBm,距基站A的距离R为450米,列车以250km/h的时速运行5秒、即70*5=350米到达A点。根据路径损耗计算公式,信号在这350米内衰耗8.85dB,即CellA在A点的信号强度RxLev为-89-8.85 -98dBm,此时C1A(-98-Accmin)-ma
12、x(CCHPWR-P,0)0,用户到A点时可以重选到CELLB。考虑到从CellB到CellA也需要重叠区域,因此重叠区域Ro2OA700米。需要注意的是,这里没有考虑天线下倾角的影响,现网中下倾角差异较大,需要依据路测结果作调整,必要时减少下倾角度来增加重叠区域。3.3.2 Active模式下的切换Active模式下的切换由手机和网络共同完成。切换算法比小区重选复杂,但一般比小区重选的发生要及时。不考虑各种惩罚和迟滞,只要邻小区信号强于服务小区,BSC即可能发出切换命令,不需要额外等待5秒钟,大约3秒内完成切换(包括滤波、排序、切换执行)。对相邻小区重叠区域长度的要求小于Idle模式,满足i
13、dle模式的重叠距离一定满足active 模式下的切换要求。3.4 小结综合以上分析,高速列车对网络质量的影响主要有以下因素:l 车体密闭造成的额外的穿透损耗增加,具体增加量与不同的车型相关,广深铁路采用的CRH1型列车穿透损耗为14dB。l 高速运行造成小区切换边缘信号强度提高,根据典型传播模型计算,切换边缘信号强度要求达到-62dBm(车体外)。l 高速运行要求小区的重叠覆盖区要达到700米。现网的铁路覆盖大多采用城乡基站兼顾铁路覆盖的形式,在低速情况下可以满足覆盖要求,但提速后往往不能满足要求,主要表现为:l 覆盖深度达不到要求,无法达到切换边缘信号强度-62dBm(车体外)的要求。l
14、小区重选切换混乱。由于重叠覆盖区不够,小区重选和切换滞后于信号衰减速度,造成无法占用最强信号,进一步恶化了覆盖。四、 高速铁路的优化策略4.1覆盖优化针对高速铁路特点,网络必须实现深度覆盖才能保证网络质量。按照前一章的分析结果,网络覆盖应达到以下标准:1、 小区切换边缘信号强度-62dBm2、 重叠覆盖区700米按照以上标准,采用常规传播模型计算小区覆盖半径约为450米,站间距为900米。为此一般情况下要对沿线的覆盖进行较大的调整,包括:1、 对于较大范围的覆盖空洞需要建设新基站进行补充覆盖;2、 对于局部的信号混乱或特殊覆盖路段(如隧道等)需要建设直放站进行补充覆盖;3、 对于现网铁路覆盖小
15、区需要进行天线、发射功率方面的调整,增加铁路的覆盖深度;4、 减少铁路覆盖小区数量,形成长距离的主覆盖信号,将覆盖距离短、覆盖衰落快的信号清理出铁路覆盖,避免频繁重选和切换。4.2 重选与切换算法优化小区重选与切换算法的各项参数要保证重选与切换的顺畅和快速完成,以配合高速列车的信号快速衰减的特点,尽量使手机能及时地占用到最强的覆盖信号。 主要涉及的参数优化方法包括:1、 BA-LIST表的简化;2、 C1、C2算法参数优化;3、 切换滤波、决策的相关参数优化;4、 其他辅助功能参数的优化。4.3 专网覆盖与现网调整目前针对高速列车质量优化的主要的思路包括现网调整和专网覆盖两类,实际上两种思路在
16、基础覆盖上的思路是相通的,其主要差别在于建设优化的方式以及对外围影响的控制方法上。4.3.1专网覆盖与现网调整的相同点1、覆盖设计标准相同,两者都基于高速列车的特点提出了覆盖深度的要求,其标准基本相同;2、两者都要求形成简洁清晰的主覆盖信号序列;3、覆盖手段相同,两者均采用以基站为主、直放站为辅的覆盖方法,采用了高增益天线、分裂第4小区等技术手段。4.3.2 专网覆盖与现网调整的差异1、专网结构要求专网信号只覆盖铁路,不覆盖周边区域,要求对信号有很好的控制,尽量避免对外围区域的泄露;2、专网形成虚拟的独立网络,只在车站区域设立专网与大网的出入口,铁路覆盖内部小区不设大网邻区,不与大网进行小区重
17、选和切换,所有切换和重选只在内部进行;而现网优化则虽然减少与外网邻区关系,但一般还保留与大网的主要相邻关系。3、专网结构完全不吸收大网业务,只吸收列车上的业务;而现网优化方案在一定程度上还需要吸收周边的话务。4、专网结构必须使用专用的BCCH频点(可以借用大网的TCH频点),而现网优化方案则采用与大网相同的频率规划方案。4.3.3 专网覆盖与现网调整的技术特点分析l 专网覆盖的优点1、专网结构有唯一的重选切换序列,信号更简洁,因此重选和切换更顺畅,因此专网结构能更好地使用列车的进一步提速;2、专网结构完全不吸收大网业务,因此只需要配置较少量的载波,频率设计也较容易。l 专网覆盖的问题1、 专网
18、结构只在车站设有与大网的出入口,如果在车站不能进入专网小区,则在列车运行期间手机将很难进入专网,造成长时间质差的问题;2、 专网对覆盖质量要求更高,如果手机在专网中一旦脱网(如掉话等),重新进入专网将有一定困难,造成长时间质差;3、 如果铁路外围用户选择了专网信号,那么用户离开铁路覆盖范围时,由于专网没有大网相邻关系,用户会出现脱网和掉话现象。l 专网建设的条件1、 沿线覆盖良好,不存在覆盖漏洞;2、 沿线环境相对空旷,周围不存在大量的城镇居民区,或者专网能够很好地控制信号的外泄,避免专网对大网用户造成影响。4.3.4现网调整与专网覆盖的融合现网调整与专网覆盖具有相同的覆盖目标和基础网络设计标
19、准,现网调整可以通过逐步对铁路覆盖基站进行覆盖加强,同时控制铁路覆盖信号对周边城镇的影响,将现网具备条件的小区进行专网化,实现逐个小区逐个小区的推进,最终形成专网的覆盖结构,最终实现全线的专网化。在实现专网化的过程中一个必要条件是实现对专网信号的严格控制,避免对周围城镇用户造成影响,如果条件不具备可以适当考虑建立“专网保护带”的方式来保证专网的有效运行。保护带小区专网小区专网保护带的思路是在专网覆盖小区的两侧选择一些非专网小区,作为专网与大网的隔离带小区,这些小区可以与专网小区进行重选和切换,以此避免周边城镇用户一进入专网就无法正常退出的问题,同时又可以避免专网小区切换关系过多的问题。五、 现
20、网覆盖优化技术5.1现网覆盖小区序列的整理由于现网结构并不专为铁路覆盖使用,因此在开展铁路的现网覆盖的具体优化之前的首要任务是清理现网覆盖小区序列。这个序列是今后覆盖调整的基础,同时也是切换和重选参数优化的基础。现网覆盖小区序列的整理方法:1、通过扫频仪或者具有扫频功能的测试手机对高速列车进行来回程的扫频测试,整理出最强信号序列;2、对信号序列进行评估,剔除信号衰减过快、覆盖距离短的小区;3、结合地图和实际环境,确定各段道路的主覆盖小区。5.2 GSM1800网的信号调整GSM1800信号由于频率高,其路径衰耗要大于GSM900,按照COS231模型,GSM1800衰耗比900大5dB以上,实
21、测效果与地形相关,广深铁路这一差距接近10dB。基于这一传播特性,GSM900比GSM1800更有利于铁路覆盖,因此应将GSM1800信号尽量清退出铁路的覆盖信号序列。具体的清理方法包括:1、通过天线调整,将1800信号移离铁路线覆盖;2、通过参数调整,删除铁路线主覆盖900小区的1800邻区,避免进入1800小区 (实际这种方法很有效,但要注意保留1800小区的900邻区关系,避免1800小区的掉话率上升)。5.3 现网覆盖小区天线调整由于铁路属于狭长地形场景覆盖,并且基站与铁路沿线有一定距离(80米400米不等),因此根据实际情况对天线进行调整。1、 天线型号的选择。现网大部分的天线多为水
22、平波瓣角为65o天线,增益在15.5dBi左右,为适应铁路的覆盖可以调整选择不同的天线。如果基站与铁路沿线的垂直距离较小(100米以内),可选择使用30度窄波束的高增益天线(增益为21dBi),通过高增益天线可以获得额外6dB增益,延长覆盖约1.4倍(奥村模型)。如果基站与铁路沿线的垂直距离较大,则不适宜使用水平波瓣过窄的天线,否则容易造成主波瓣覆盖距离过短的问题。此时可以选择垂直波瓣更窄的高增益天线,如KRE739624,增益可达到18dBi。2、 天线方向角的调整 天线方向角调整可以使小区主波瓣更好地沿铁路方向覆盖,有效地提高覆盖距离。方向角的调整与基站与铁路的垂直距离相关,一般原则是距离
23、越近则方向可越贴近铁路线方向,距离越远,则天线方向越垂直铁路方向。下图对于同一个基站,距离铁路距离分别为200米和300米时天线方向的仿真效果对比,可见当要求达到相同覆盖效果时,200米时可采用更大的天线夹角。3、 天线方向角的调整当铁路沿线某段有多个小区场强比较接近时,建议调整相关小区的天线方向和下倾角,确认主服务小区场强为主导信号,降低其他小区的信号强度。4、 典型案例问题描述:广深铁路黄村至吉山工业区段,黄村段信号覆盖混乱,无主导小区;吉山工业区基站信号和邻小区重叠覆盖较少,如下小区覆盖仿真图。广深铁路解决方案:调整黄村2基站一扇区的下倾角,控制其不覆盖在广深铁路,调整黄村基站一、三扇区
24、天线方向角如下图,使之成为黄村地段的主导小区,把吉山工业区二扇区功分出两副天线,角度如下。cell_id基站名天线方向方位调整天线高度天线下倾下倾调整载波数备注GAEJSQ2吉山工业区200120/24034.56510功分GAJHUC1黄村856023.5338从7楼平台升到8楼抱杆上GAJHUC3黄村27033030048三扇区900和1800天线位置互换GAJHC21黄村3028.56108压低天线,控制覆盖范围5.4分裂第四小区第四小区覆盖是指在现有的三小区蜂窝小区结构上,新增一个小区用于提升覆盖。采用第四小区覆盖铁路的方案如图3所示:对于高速铁路第四小区,硬件上要求每小区要功分覆盖两
25、个方向,这样可以减少高速列车的小区切换和重选数目。第四小区对铁路的覆盖和主要优势:对原有覆盖不造成影响。以往的覆盖模式,小区服务范围除铁路外还有周边的道路和城区,因此对铁路的覆盖调整要考虑的因素很多,存在铁路覆盖和周边覆盖相互制约的情况。而采用第四小区专门用于覆盖铁路则不存在这种制约。1、 不影响原有话务吸收,容量优化简单。铁路覆盖区域如穿过城区,话务量大,对铁路的话务存在隐患。而且铁路小区优化往往进行功分和功率扩展,将给覆盖小区带来更大的话务压力,话务量成了制约铁路小区覆盖延伸的制约条件。而采用第四小区可以专门覆盖铁路,无需考虑话务压力的问题,可以将覆盖的优化做的更好。2、 有利于实现铁路的
26、专门覆盖,形成简洁的小区重选和切换关系。3、 有利于参数的优化。第四小区专门进行铁路的优化,可以将一些特殊的利于高速移动的参数在第四小区进行修改,而不会对其它用户造成影响,不采用第四小区则无法实现。分裂第四小区的注意事项和适用条件:1、 合理的站址(距离铁路垂直距离100米)及站间距(1km)。因为第四小区专门覆盖铁路,应该尽量减少对非铁路区域的覆盖,因此和铁路越近,效果越好;站间距适宜在1km以上,列车高速移动,要保证切换和重选合理,必须有这个距离。2、 天线类型选取(宜采用高增益(21dBi)窄波瓣天线)。这也是考虑减少铁路外的覆盖,增强第四小区的信号,延伸第四小区覆盖距离的需要。3、 对
27、于高话务密集信号杂乱,小区切换重选频繁的城区,使用第四小区形成主导,可以较好的避免因为话务导致切换失败的情况出现。5.5 功分扇区 铁路沿线的现网小区中有一部分已经专门用于覆盖铁路,无须承担本地网客户覆盖任务的小区,将这些小区功分扇区,在无线覆盖效果上与新分裂一个第四小区是完全一致,而且小区功分扇区不需要额外增加基站主设备,可以有效节省设备资源。典型案例 东莞茶山超朗路段,主覆盖该路段的主导小区是超朗第1小区和第3小区,列车从广州到深圳方向行驶时先占用超朗第3小区再使用超朗第1小区。在两小区交界处信号受到几栋房屋阻挡,信号衰减20dB左右,导致在此路段占用到超朗第3小区的手机信号突然下降,虽然
28、手机过了一秒钟后可以测试到超朗第1小区信号有-85DBm以上,但由于已经质差太严重而无法收到系统的切换命令,最终导致质差掉话。(深广方向的小区占用次序不一样,但情况相同。) 根据测试情况、话务统计情况及站点覆盖情况,最后选择对话务量比较低、对本地网络影响较少的超朗第三小区进行小区功分,功分后的两个方向为320度和120度,功分后虽然整个小区的信号强度有所下降,同时,两天线交叠处的信号强度最低达-98dBm,但掉话现象消除。功分前信号强度:功分及安装MCPA后信号强度:5.6 功率放大器的应用 由于小区功分后的每方向的信号强度会下降3dB以上,部分路段的信号覆盖会无法满足需要,为了弥补功分所损失
29、的功率需要在小区天线输出口上安装基站功率放大器。铁路沿线还有一些基站因为三相电源、基房面积等原因而通过微蜂窝代开通,由于微蜂窝最大的输出功率只有33dBm(2W),远小于正常基站的47dBm(50W),所以,我们也可以采用安装基站功率放大器的方法来将微蜂窝的输出功率提升到与宏基站相同。此外,微蜂窝加多载波放大器的组网方式非常简单方面,大大缩短宏基站的建设周期。多载波放大器(MCPA)的单载波最大输出功率为150W(51.7dBm),载波数增加一倍输出功率下降3dB,当载波数不大于8个时,输出功率基本可以保证不弱于正常宏蜂窝输出功率。多载波功率放大器(MCPA)的注意事项:1、一个多载波功率放大
30、器(MCPA)连接的小区载波数不能超过八个载波,否则,就会造成安装多载波功率放大器(MCPA)后的输出功率比基站直接输出功率还要低,失去了安装意义;2、多载波功率放大器(MCPA)连接小区的载波数越少功率越强;3、多载波功率放大器(MCPA)适用于补偿小区因功分而下降的功率;4、微蜂窝小区连接多载波功率放大器(MCPA)效果最明显,相当于一个宏基站的输出功率。典型案例 东莞刁朗第4小区是一个微蜂窝小区,存在两个覆盖方向,在安装MCPA之前该小区覆盖到铁路的平均信号强度为-85dBm;覆盖范围少于600米,无法到达覆盖要求。在刁朗第4小区两个方向分别安装一台多载波功率放大器(MCPA),铁路上测
31、试到的最强信号从-75dBm提升到-68dBm,覆盖范围从600米延长到1800米左右,平均信号强度提升到-80dBm左右,可以直接与百果洞新村第一小区连接,保证该路段的信号覆盖。安装MCPA前的测试情况:安装MCPA后的测试情况:5.7 新增宏基站建设方案当铁路沿线覆盖存在较大空洞时,需要建设宏基站来解决覆盖深度问题。沿线新增的宏站应尽量靠近铁路,垂直距离务应控制在300米之内。建设宏基站时需要进行详细的技术勘察,必要时可进行覆盖仿真。仿真时应注意以下几点:1、传播模型的选择与校正,由于铁路穿越不同的区域,包括城区、郊区、农村、平原、丘陵等区域,因此需要正确地选择合适的传播模型,必要时还需要
32、进行模型的校正工作;2、针对不同的区域选择不同的地图精度;3、覆盖边缘场强应设置为车体外的场强要求(-62dBm);4、要根据车速计算各路段重叠覆盖区,检查是否满足700米的重叠要求。5.8 直放站方案在铁路覆盖中,存在建筑物、山体阻挡,或者隧道等情况,造成信号急速衰减,针对这种情况,可以通过架设光纤直放站来实现局部区域的覆盖提升。直放站技术是常规的覆盖优化手段,在此不再赘述。铁路线上的直放站应用主要需要注意以下几点:1、 时延窗口的限制,由于光纤传输的限制以及直放站本身的时延,直放站远端机的距离不能超过20公里,否则会造成有信号无法起呼的现象;2、 由于直放站的长距离覆盖,可能会造成频率干扰
33、,必须进行细致的频率设计;3、 直放站上行噪声对施主基站上行质量会造成影响,应合理设计增益,避免造成上行干扰;4、 直放站缺乏动力保障而且自身的设备故障率较高,应避免使用在关键路段,同时也不适合专网覆盖。六、 基于现网结构的参数优化方法6.1 空闲模式参数优化手机空闲模式下主要完成信号监测、服务小区和相邻小区的广播消息监听、寻呼监听、小区重选等任务。为适应高速铁路的信号快速变化的特点,应加快小区重选的流程,使手机能尽量驻留在最强的信号上。空闲模式的参数优化主要包括以下几方面:1、 空闲BA表的简化简化空闲BA表,减少需要监听的邻区BCCH数量。BA表越长,则手机对单个邻区的测量时间越短,越少时
34、间去监听邻区的BSIC,造成小区重选的滞后,因此必须减少BA表,建议降低到12个以下。2、 BS_PA_MFRMS的优化手机在空闲状态使用不连续接收(DRX)来降低手机耗电(见下图),但如果DRX周期过长,则手机监测网络的时间就越短(如下图),测量的准确性和及时时就会下降,因此在铁路线上应尽量缩短DRX周期。DRX周期由寻呼的多帧结构长度(BS_PA_MFRMS)决定,以200km/h的时速计算,当BS_PA_MFRMS=2时,对邻区的测量时间间隔为为0.47秒,列车运行了26米,而如果BS_PA_MFRMS设为9,则测量间隔达到2.12秒,列车运行了118米,可见当BS_PA_MFRMS设置
35、过大时,对邻区的测量不能及时追踪信号的变化情况。因此减小铁路沿途小区的BS_PA_MFRMS值,可以提高手机在空闲状态下信号测试数量和准确性,建议统一设BS_PA_MFRMS为2。BS_PA_MFRMS信号监测周期列车运行里程(速度200km/h)20.47 秒26 米51.18 秒65 米71.65 秒92 米92.12 秒118 米3、 ACCMIN、CRO的优化 ACCMIN直接影响C1值的计算,CRO则影响C2的计算,如果铁路线上相邻小区的ACCMIN和CRO不相等,则必然造成列车一个运行方向上的重选滞后,因此建议铁路线上的主覆盖小区的ACCMIN取相同值(-102dBm),CRO值取
36、0。 为提高铁路线上主覆盖小区的重选优先权,可以提高周边小区的ACCMIN值(设为-100dBm),使其C1、C2值减小。4、 PT与TO的设置 PT与TO参数配合可以实现对邻区C2值计算的临时惩罚,在普通环境下可以减少小区重选,但对于高速列车的环境,延迟小区重选只能造成起呼无法占用主覆盖信号,加大起呼失败的机会,因此建议PT与TO设置为0。5、 CBQ的设置 设置CBQ参数可以调整小区选择时的优先级别,一般现网小区该参数均为HIGH。在专网配置时可以考虑将铁路专网小区CBQ设为LOW,以避免铁路周边用户错误进入专网小区,在现网调整方案中考虑到铁路线较长而且存在部分区域的信号覆盖不足,客户可能
37、在列车运行期间开关机或换电池,又或者通信中断,此时将CBQ设为LOW,将导致列车上的用户无法选用铁路线的主覆盖小区,因此建议在现网优化方案中CBQ保持与大网一致,设为HIGH。6、 小区参数CRH(Cell Reselection Hysteria的优化 为了保证在高速列车上的小区重选性能,应当对参数CRH进行重新评估。在GPRS READY状态,参数CRH对小区重选有影响,邻区信号强度必须比驻留小区高出CRH (dB),手机才能重选到新的小区去;另外在位置区边界,小区重选也必须满足以上条件才能发生,因此为避免CRH对小区重选的滞后作用,所有铁路沿线的小区如果没有特殊原因,CRH的值应当默认为
38、4或更小。防止CRH过大,导致手机迟迟不重选,影响接收电平和接收质量。7、 READY TIMER (T3314)的优化过大的ReadyTimer会导致手机经常处于GPRS Ready状态。而在Ready状态下,手机在计算相邻小区的C2值时,无论是LA内部小区还是LA外部小区,额外要加CRH的迟滞,为了减少手机处于Ready状态的时间,建议将覆盖铁路沿线的SGSN中的ReadyTimer相应调小,具体数值需要结合SGSN覆盖区的业务特点和GPRS寻呼指标进行调整,调整范围建议为520秒。6.2 切换相关参数优化切换对于通信的保持性非常重要,高速列车也容易产生切换混乱或切换不及时问题。切换算法属
39、于厂家私有算法,因此涉及的参数均为厂家私有参数,本文主要以爱立信切换算法为例介绍切换参数优化的思路。1、 简化切换邻区关系 切换相邻关系越多,则需要测量的邻区信号越多,测量精度和测量及时率都会下降,在一定程度上会影响切换的准确性和及时性。因此应尽量简化切换相邻关系。 例子:东莞石龙和茶山两小区将相邻关系减少到5个后,相应的测量频点少。由于测量频点少,手机能够更精确测量相邻小区,及时解码邻小区BSIC。在弱信号或者通话质量下降时,及时切换到新小区,减少切换失败、切换掉话的概率,提高通话质量,调整前后RXQual=0的比例由46%提高到69%。2、 BCCH的优化 手机在激活状态下测量邻区时只根据
40、BCCH和BSIC来识别邻区,而BSIC是此时识别同BCCH小区的唯一标识,由于高速列车运动速度快,手机有可能不能及时更新BSIC,错误地将旧的邻区的BSIC上报给BSC,导致BSC切换决策错误,因此对高速列车的沿线小区的BCCH要进行优化,选择特殊的BCCH组,避免与周边城镇小区同BCCH。3、 切换的最小时间间隔参数优化爱立信切换算法中限定了切换与信道分配或前一次切换的最小时间间隔TINIT,在TINIT个480ms内,禁止发生第二次切换,为避免影响切换,TINIT应调小,但该参数为全局参数,调得过小容易造成全BSC的切换数量上升,切换过频繁,因此建议TINIT调为7,即3.3秒内禁止二次
41、切换。4、 SDCCH允许切换 手机起呼后首先占用SDCCH进行呼叫相关的信令交互,一般占用的时间310秒不等(与呼叫类型、鉴权相关),在高速列车运行中这段时间信号可能发生很大的变化,为了保证呼叫能正常完成,应允许在信令交互期间的切换,即SDCCH的切换(爱立信的相关参数为SCHO)。另外为保证在MSC边界的信令信道切换成功,还需要在MSC上开启相关的切换开关(爱立信参数包括:HNDSDCCHM、HNDSDCCHTCHM、HNDBEFOREBANSWM、HNDSDCCHINTOM、HNDSDCCHINTI。5、 切换算法的滤波参数 手机上报的测量报告要在BSS中经过平滑滤波后在送切换决策,这样
42、做的目的是为了防止个别测量导致切换频繁发生。各厂家的滤波算法差异较大,种类也较多,为适应高速列车的信号变化快的特点,应选择响应较快的滤波器类型,并且设置较短的滤波器长度。针对爱立信的滤波算法,可以选择使用线性递归滤波器,滤波器长度可以设为3或者2。6、 切换边界偏移量的调整 在现网中为了话务均衡,有时会调整切换边界偏移量来控制相邻小区的话务分担。在高速铁路线上不适宜采用这种话务调整方法,因为这样会造成单方向的切换滞后。因此建议切换边界偏移量都应归零(爱立信参数KOFFSET、OFFSET)。7、 分层结构参数 GSM网络中使用分层结构来实现话务的分流:低层小区吸收高密度话务,中层小区负责覆盖,
43、高层小区负责补充覆盖,为此低层小区具有话务吸收优先权。这样的分层结构在铁路线上是不适合的,原因是:低层小区覆盖距离太短,信号衰减过快;高层覆盖站距离铁路距离远,信号强度不足以实现对铁路的补充覆盖。因此在铁路线上应避免使用分层结构。 实际现网由于铁路穿越城区,有可能占用到低层小区信号,为避免此现象,可以对分层小区进行以下调整:l 调整天线,将低层小区信号移出铁路线;l 调整分层参数,提高低层小区的进入门槛(爱立信参数:LAYERTHR);l 取消低层小区优先级,调整为普通小区(爱立信参数:LAYER)。6.3 其他相关参数优化1、 上下行功率控制GSM系统中,上下行功率控制的最小周期为480毫秒
44、,以高速列车的运行速度,480毫秒可以行驶超过30米,信号强度可能发生较大变化,因此现有GSM功率控制的速度无法适应高速列车的环境,建议铁路沿线的小区应关闭上下行功率控制功能。2、 上下行不连续发射功能 如果启用了不连续发射功能,在语音静默期,手机或基站会停止发射,此时手机/基站对下行/上行信号的测量只在少量的帧中进行,测量时间大大减少,测量精度也下降,有可能因此影响切换,因此建议关闭上下行的不连续发射功能。3、 无线链路质量监测TIMER 手机和基站中均使用特殊的TIMER分别对下行和上行无线链路进行监测,当在一定时间内连续无法解码SACCH信息时,手机/基站就会主动释放无线链路。在普通环境
45、下,设置较大的TIMER有利于无线链路保持和通信恢复,但在高速列车环境下,小区信号衰落后一般很难恢复,而设置过大的TIMER会造成用户无法重新起呼或者被叫失败(系统还将手机认为是处于连接状态),因此对高速铁路线上的小区相关TIMER应调小。建议调整为10(单位为480ms)。七、 技术方案总结在高速铁路的现网调整优化方法的研究中,我们主要考虑了覆盖标准、覆盖调整方法、参数优化方法三个方面的优化思路。研究中主要依靠在广深铁路的优化项目中总结经验,因此相关的经验在地理环境、无线网络结构、设备等各方面都带有一定的局限性,例如参数优化就只适用于爱立信设备。我们认为这次研究的成果不在于研究所获得的具体方法,而在于总结了一些研究的方法和思路。我们将继续在已有基础上继续开展工作,将广深高速铁路的优化方法推广应用到省内的其它铁路线和高速道路上去。八、 引用1 高速铁路专网设计与优化(中国移动集团上海有限公司)2 爱立信ALEX文档3 3GPP Technical Specification 45.00230