《食品微生物第五章微生物的营养和培养基课件.ppt》由会员分享,可在线阅读,更多相关《食品微生物第五章微生物的营养和培养基课件.ppt(47页珍藏版)》请在三一办公上搜索。
1、第五章 微生物营养,第一节 微生物细胞的化学组成第二节 微生物的营养物质及生理功能第三节微生物对营养物质的吸收方式第四节微生物的营养类型第五节 培养基,第一节 微生物细胞的化学组成 微生物细胞化学组成成分析表明,与其他高等动植物细胞一样,细胞也是大量元素碳、氢、氧、氮、磷、硫(这六种元素占细菌细胞干重的97)和微量元素铁、锰、锌等构成。 微生物细胞中这些元素主要以蛋白质、糖、脂、核酸、维生素及它们的降解产物、代谢产物等有机物质,水和无机盐等无机物质的形式存在。水是细胞中的一种主要成分,一般可占细胞干重的90以上。,微生物细胞中几种主要元素的含量(干重的百分数),微生物细胞的化学组成,第二节 微
2、生物的物质及生理功能营养物(nutrient): 那些能够满足机体生长、繁殖和完成各种生理活动所需要的物质通常称为微生物的营养物质。 营养(或叫营养作用,nutrition ): 微生物获得与利用营养物质的过程通常称为营养。,微生物和动物、植物营养要素的比较,碳源(carbon source)凡是提供微生物营养所需的碳元素(碳架)的营养源,称为碳源。 碳源物质的功能:构成细胞物质;为机体提供整个生理活动所需要的能量(异养微生物)。 微生物的碳源谱 无机含碳化合物:如CO2和碳酸盐等。 有机含碳化合物:糖与糖的衍生物、脂类、醇类。有机酸、烃类、 芳香族化合物以及各种含氮的化合物。 微生物不同,利
3、用上述含碳化合物的能力不同,如假单胞菌属中 的某些种可以利用90种以上的不同类型的碳源物质;而某些甲基营养 型细菌只能利用甲醇或甲烷等一碳化合物进行生长。,微生物的碳源谱,氮源(nitrogen source) 凡是提供微生物营养所需的氮元素的营养源,称为氮源。 氮源物质的主要作用是合成细胞物质中含氮物质,少数自养细菌能利用铵盐、硝酸盐作为机体生长的氮源与能源,某些厌氧细菌在厌氧与糖类物质缺乏的条件下,也可以利用氨基酸作为能源物质。 微生物的氮源谱见表,微生物的氮源谱,实验室常用的无机氮源有碳酸铵、硝酸盐、硫酸铵、尿素、蛋白胨、牛肉膏、酵母膏等。 生产上常用的氮源有硝酸盐、铵盐、尿素、氨以及蛋
4、白含量较高的鱼粉、蚕蛹粉、黄豆饼粉、花生饼份、玉米浆等。 蛋白氮必须通过水解之后降解成胨、肽、氨基酸等才能被机体利用,这种氮源叫迟效氮源。 无机氮源或以蛋白质降解产物形式存在的有机氮源可以直接被菌体吸收利用,这种氮源叫做速效氮源。 多数微生物可以利用无机含氮化合物作为氮源,也可以利用有机含氮化合物作为氮源。但有些微生物没有将无机氮合成有机氮的能力,它们不能把尿素、铵盐等这些无机氮源自行合成他们生长所需的氨基酸,而需要从外界吸收现成的氨基酸作为氮源才能生长,这类微生物叫做氨基酸异养型微生物,也叫营养缺陷型。,3、能源 指能为微生物的生命活动提供最初能量来源的营养物或辐射能。 微生物的能源谱: 有
5、机物:化能异养微生物的能源(同碳源) 化学物质 能源谱: 无机物:化能自养微生物的能源(不同于碳源) 辐射能:光能自养和光能异养微生物的能源,化能自养微生物的能源物质都是一些还原态的无机物质,例如:NH4+、NO2-、S、H2S、H2、Fe2+ 等,能利用这些物质作为能源的全部是细菌,如:硝酸细菌、亚硝酸菌、硫化细菌、硫细菌、铁细菌、硫细菌、氢细菌和铁细菌等。这些无机养料常常是双功能的(如: NH4+ 既是硝酸细菌的能源,又是它的氮源。) 有机营养物常有双功能或三功能作用,既是异养微生物的能源,又是它们的碳源或氮源。 辐射能是单功能的,只为光能微生物提供能源。,生长因子(growth fact
6、or) 是一类对微生物正常代谢必不可少且不能用简单的碳源或氮源自行合成的有机物。 主要包括维生素、氨基酸、嘌呤和嘧啶(碱基)及其衍生物,此外还有甾醇、 胺类、脂肪酸等等。 生理功能 : 1.构成细胞成分;2.调节代谢,维持正常生命活动。,无机盐 是微生物生长必不可少的一类营养物质,它们为机体生长提供多种重要的生理功能,包括大量元素和微量元素。 大量元素:P、S、K、Mg、Ca、Na、Fe等。 (微生物生长所需浓度在10-310-4mol/L) 微量元素:Cu、Zn、Mn、Mo、Co等。 (微生物生长所需浓度在10-610-8mol/L) 一般微生物生长所需要的无机盐有:硫酸盐、磷酸盐、氯化物以
7、及含有钠、钾、镁、铁等金属元素的化合物。,无机盐的生理功能 细胞内一般分子成分(P、S、Ca、Ma 、Fe等) 一般功能 渗透压的维持(Na+等) 生理调节物质 酶的激活剂(M a2+等) 大量元素 pH的稳定无 化能自养菌的能源(S、Fe2+、NH4+、NO2-等)机 特殊功能 盐 无氧呼吸时的氢受体(NO3-、SO42-等) 酶的激活剂(Cu2+、Mn2+ 、Zn2+等) 微量元素 特殊分子结构成分(Co、Mo等),水分: 水分是生物细胞的主要化学成分,其重要的生理功能表现在下列几个方面:1. 细胞的构成成分2.一系列生理生化反应的反应介质3.参与许多生理生化反应4. 有效地控制细胞内的温
8、度变化,第三节 微生物吸收营养物质的方式,单纯扩散(simple diffusion)促进扩散(facilitated diffusion)主动运输(active transport)基团转移 (group translocation),被动扩散(单纯扩散) 扩散是非特异性的营养物质吸收方式; 在扩散过程中营养物质的结构不发生变化; 物质运输的速率由细胞膜内外浓度差决定; 扩散是一个不需要代谢能的运输方式,二、促进扩散 促 进 扩散 : 借助 于 膜上底 物 特 异 性 载 体 蛋白的 参与 , 加 快环境中 高浓 度 物质进 入 细胞, 直至膜两侧 的 溶 质 浓 度 相 等为 止 。 通
9、过 促 进 扩散 进 入 细胞的营养物质 主 要有 氨基 酸、 单 糖、维 生素 及 无机盐 等 营养物质本身在分子结构上也不会发生变化 不消耗代谢能量,故不能进行逆浓度运输 运输的速率由胞内外该物质的浓度差决定需要细胞膜上的载体蛋白(透过酶)参与物质 运输被运输的物质有高度的立体专一性,Na+,K+-ATPase系统位于细胞膜上的一种离子通道蛋白,其作用是通过该蛋白构象的改变,把细胞内的Na运出细胞,同时将K+运回细胞内,即实现了Na+与K+的置换。细胞内高浓度K+是许多酶的活性和蛋白质合成所必须的。,Na+,K+-ATPase系统,Na+,K+-ATPase系统位于细胞膜上的一种离子通道蛋
10、白,其作用是通过该蛋白构象的改变,把细胞内的Na运出细胞,同时将K+运回细胞内,即实现了Na+与K+的置换。细胞内高浓度K+是许多酶的活性和蛋白质合成所必须的。,四、基团转位 基因转位是一种特殊的主动运输与普通的主动运输相比,营养物质在运输的过程中发生了化学变化。其余特点与主动运输相同。 基因转位主要存在于厌氧微生物中,也主要是用于单(或双)糖与糖的衍生物,以及核苷与脂肪散的运输,大肠杆菌吸收糖的基团转位方式,大肠杆菌吸收糖依赖于磷酸烯醇丙酮酸-糖磷酸转移酶系统,其运输的步骤如下:(1) 热稳定蛋白的激活: PEP+HPr 酶1 丙酮酸+P-HPr(2) 糖被磷酸化后运入膜内 P-HPr+糖
11、酶2 糖-P+HPr,四种运输营养物质方式的比较,第四节 微生物的营养类型 根据生长所需要的营养物质的性质,可将生物分成两种基本的营养类型异养型生物:在生长时需要以复杂的有机物质作为营养物质自养型生物:在生长时能以简单的无机物质作为营养物质 动物属于异养型生物,植物,而微生物既有异养型的也有自养型的,大多数微生物属于异养型生物,少数微生物属于自养型生物。 根据生长时能量的来源不同,又可将生物分成两种类型化能营养型生物:依靠化合物氧化释放的能量进行生长光能营养型生物:依靠光能进行生长 动物和大部分微生物属于化能营养型生物,它们从物质的氧化过程中获得能量。植物和少部分微生物属于光能营养型生物,光能
12、自养型微生物以C02作为唯一碳源或主要碳源,并利用光能,以无机物如硫化氢、硫代硫酸钠或其他无机硫化物作为供氢体将CO2还原成细胞物质,同时产生元素硫 光能 CO2H2S CH2O+2S+H2O 光合色素 光能自养型微生物包括蓝细菌(含叶绿素)、红硫细菌和绿硫细菌等少数微生物(含细菌叶绿素)(ATP),供机体直接利用。,光能异养型微生物以CO2为主要碳源或唯一碳源,以有机物(如异丙醇)作为供氢体,利用光能将CO2还原成细胞物质,红螺菌属中的一些细菌属于此种营养类型。 光能 2(H3C)2CHOH+CO2 2CH3COCH3+CH2O+H2O 光合色素光能异养型细菌在生长时大多数采要外源的生长因子
13、,化能自养型微生物 以CO2或碳酸盐作为唯一或主要碳源,以无机物氧化释放的化学能为能源,,利用电子供体如氢气、硫化氢、二价铁离子或亚硝酸盐等使CO2还原成细胞物质。 这类微生物主要有硫化细菌、硝化细菌、氢细菌与铁细菌。它们在自然界物质转换过程中起着重要的作用。,化能异养型微生物 多数微生物属于化能异养型,其生长所需要能量和碳源通常来自同一种有机物。 根据化能异养型微生物利用有机物的特性,又可以将其分为下列两种类型:腐生型微生物:利用无生命活性的有机物作为生长的碳源。寄生型微生物:寄生在生活的细胞内,从寄生体内获得生长所需要的营养物质。存在于寄生与腐生之间的中间过渡类型微生物,称为兼性腐生型或兼
14、性寄生型。,第五节 培养基,培养基是人工配制的适合于不同微生物生长繁殖或积累代谢产物的营养基质。它是进行科学研究,发酵生产微生物制品等的基础 。,配制培养基的原则 1. 根据不同微生物的营养需要配制不同的培养基, 如自型微生物的培养基完全可以(或应该)由简单的无机物质组成。异养做生物的培养基至少需要含有一种有机物质。 按微生物的主要类群来说,又有细菌、放线菌、酵母菌和霉菌之分。它们所需要的培养基成分也不同,分别称为牛肉膏蛋白胨培养基,高氏1号合成培养基,麦芽汁培养基,查氏合成培养基。,2.注意各种营养物质的浓度与配比 营养物的浓度:在一般情况下,浓度合适的营养物质才对微生物表现出良好作用,浓度
15、大时对微生物生长起抑制作用,浓度小时不能满足微生物生长的需要。 各营养物质之间的浓度比:培养基中各营养物质之间的浓度比直接影响微生物的生长与繁殖和(或)代谢产物的形成与积累,尤其是碳氮比(CN)(碳氮比一般指培养基中元素碳与元素氮的比值,有时也指培养基中还原糖与粗蛋白两种成分含量之比)的影响更为明显。例如在微生物的谷氨酸发酵中,培养基的C N为4:l时,菌体大量繁殖,谷氨酸积累少;当CN为3:1时,菌体繁殖受到抑制,而谷氨酸大量增加。,3.控制培养基的PH值 各类微生物生长的最适pH各不相同,细菌与 放线菌生长的pH在77.5之间,酵母菌与霉菌生长的pH值在4-5之间。 在微生物的生长和代谢过
16、程中,由于营养物质的利用和代谢产物的形成与积累,常会改变培养基的pH值,为了维持培养基pH值的相对恒定,通常采用下列两种方式:内源调节:在培养基里加一些缓冲剂或不溶性的碳酸盐;调节培养基的碳氮比。外源调节:按实际需要流加酸或碱液,4.经济节约 配制培养基时,应尽量考虑利用价廉并且易于获得的原料作为培养基的成分,特别是在工业发酵中,培养基用量很大,更应该考虑到这一点,以便降低产品成本。,培养基的种类,按培养基的物理状态分类按培养基的组成成分分类按营养成分是否完全分类按培养基的功能分类按用于生产的目的分类,根据培养基的物理状态可将其分为: 固体培养基(solid medium ) :在液体培养基中
17、加入1.5-2.0%的凝固剂制成的呈固体状态的培养基。常用于微生物的分离、纯化、计数等方面的研究。 半固体培养基基( semi-solid medium) :在液体培养基中加入0.2-1的琼脂构成的培养基。常用来观察细菌运动的特征,以进行菌种鉴定和噬菌体效价滴定等方面的实验工作。 液体培养基(liquid medium ):液体培养基不含任何凝固剂,它常用于大规模的工业生产以及在实验室进行微生物生理代谢等基本理论的研究工作。,根据培养基中化学成分的了解程度将其分为: 合成培养基(synthetic medium) :由化学成分完全了解的物质配制而成的培养基。 天然培养基(complex med
18、ium) :利用化学成分还不清楚或化学成分不恒定的天然有机物质制成的培养基。 半合成培养基(semi-defined medium) :加入某种或几种天然成分及已知成分的培养基。如:PDA马铃薯葡萄糖培养基。,1.基础培养基(minimum medium)在一定条件下含有某种微生物生长繁殖所需的基本营养物质的培养基,也称为基本培养基。2.完全培养基(complete medium)在一定条件下含有某种微生物生长繁殖所需的所有营养物质的培养基。3.补充培养基( supplemental medium )往培养基中有针对性的加入某一种营养成分。,根据培养基营养成分是否完全 分类:,按照培养基的用途
19、,可将其分为 增殖培养基(enrichment medium) :加富培养基是指在普通培养基里加过血、血清、动物(或植物)组织液或其他营养物质(或生长因子)的一类营养丰富的培养基,用以培养某种或某类营养要求苛刻的异养微生物。 选择培养基(selective medium):选择培养基是根据某种或某一类群微生物的特殊营养需要或对某种化合物的敏感性不同而设计出来的一类培养基。利用这种培养基可以将某种或某类微生物从混杂的微生物群体中分离出来。 鉴别培养基(differential medium):普通培养基中加入能与某种代谢产物发生反应的指示剂或化学药品,从而产生某种明显的特征性变化,以区别不同的微生物。,按照培养基用于生产的目的,可将其分为 种子培养基(Seed culture medium) :为了在短时间内获得大量优质菌种而设计的培养基。: 发酵培养基(Fermentation medium) :为了满足生产菌种大量繁殖并能积累大量代谢物质产物而设计的培养基。:,