高等教育《最优控制理论》ppt课件第四章.ppt

上传人:牧羊曲112 文档编号:1802225 上传时间:2022-12-19 格式:PPT 页数:52 大小:1.61MB
返回 下载 相关 举报
高等教育《最优控制理论》ppt课件第四章.ppt_第1页
第1页 / 共52页
高等教育《最优控制理论》ppt课件第四章.ppt_第2页
第2页 / 共52页
高等教育《最优控制理论》ppt课件第四章.ppt_第3页
第3页 / 共52页
高等教育《最优控制理论》ppt课件第四章.ppt_第4页
第4页 / 共52页
高等教育《最优控制理论》ppt课件第四章.ppt_第5页
第5页 / 共52页
点击查看更多>>
资源描述

《高等教育《最优控制理论》ppt课件第四章.ppt》由会员分享,可在线阅读,更多相关《高等教育《最优控制理论》ppt课件第四章.ppt(52页珍藏版)》请在三一办公上搜索。

1、最优控制理论,选用教材:王朝珠、秦化淑 最优控制理论 科学出版社教学参考书:系统最优化及控制 符曦 机械工业出版社 最优控制理论与应用 解学书 清华大学出版社,第四章 极小值原理及其应用,用古典变分法解最优控制问题时,假定u(t)不受限制,从而得到最优控制应满足,实际上在工程问题中,控制变量总有一定的限制.,设控制变量被限制在某一闭集内,即u(t)满足,满足限制条件的u(t)称为容许控制,由于u不能是任意的,的条件已不存在,4-1.连续时间系统的极小值原理,设系统状态方程为:,初始条件,为有界闭集,不等式约束为,G为m维连续可微的向量函数,系统从x0转移到终端状态x(tf),tf未给定,终端状

2、态x(tf)满足等式约束,M为q 维连续可微向量函数,性能指标:,最优控制问题就是要寻找最优容许控制u(t)使J为极小,令,于是,系统方程为:,终端时刻tf 未给定,终端约束,要求确定最优控制,使性能指标,为极小,引入拉格朗日乘子向量及,写出增广性能指标泛函,令哈密而顿函数为,拉格朗日纯量函数,则,对J取一阶变分得,令,可得增广性能指标泛函取极值的必要条件为,欧拉方程,横截条件:,把的表达式代入欧拉方程:,横截条件:,由欧拉方程和横截条件知,最优轨线,以上为使性能指标J取极值的必要条件,为使性能指标为极小,还必须满足维尔斯特拉斯函数沿最优轨线非负的条件,即:,或:,上式表明,沿最优轨线函数H相

3、对最优控制u*(t)取绝对极小值,这是极小值原理的一个重要结论.,0,0,-*,上式表明,在有不等式约束的情况下,沿最优轨线,不再成立,定理:(极小值原理),设系统的状态方程为,控制u(t)是有第一类间断点的分段连续函数,属于p维空间中的有界闭集,满足不等式约束:,在终端时刻tf 未知的情况下,为使状态自初态,转移到满足边界条件,的终态,并使性能指标,达极小值.设哈密而顿函数为,则最优控制u*(t),最优轨线x*(t)和最优伴随向量*(t)必须满足下列条件:,(1).沿最优轨线满足正则方程:,式中是与时间t无关的拉格朗日乘子向量,其维数与G相同,若G中不包含x,则:,(2)横截条件及边界条件:

4、,(3)在最优轨线x*(t)上与最优控制u*(t)相对应的H函数取绝对极小值,即,并且沿最优轨线,下式成立,上述条件与不等式约束下的最优控制的必要条件相比较,横截条件及端点边界条件没有改变,仅,这一条件不成立,而代之以与最优控制相对应的函数为绝对极小,其次是正则方程略有改变,仅当G中不包含x时, 方程才不改变.,当 t0和x(t0)给定,根据tf给定或自由, x(tf)给定,自由或受约束等不同情况下所导出的最优解必要条件列表如下:,例1,设宇宙飞船质量为m,高度为h,垂直速度为v,发动机推力为u,月球表面的重力加速度设为常数g,不带燃料的飞船质量为M,初始燃料的总质量为F,飞船的状态方程为:,

5、要求飞船在月球上实现软着陆,即终端约束为,发动机推力u受到约束,试确定u*(t),使飞船由已知初态转移到要求的终端状态并使飞船燃料消耗最少,即使得,本题是控制受约束, tf 自由,末值型性能指标,终端受约束的最优控制问题.,解:,构造哈密而顿函数,伴随方程:,横截条件,为待定的拉格朗日乘子,将哈密而顿函数整理,有极小值原理知, H相对u*(t)取极小值,因此最优控制律为:,上述结果表明,只有当发动机推理在最大值和零值之间进行开关控制,才有可能在实现软着陆的同时保证燃料消耗最少.,4-2离散系统极小值原理,设离散系统的状态方程为:,其中f是连续可导的n维向量函数, x(k)为n维的状态向量序列,

6、 u(k)为p维控制向量序列,k表示时刻tk,终端时刻tf=tN.设初始状态x(0)=0,终端时刻tN给定,终端状态x(N)自由,控制向量序列u(k)无不等式约束.系统性能指标为:,要求寻找最优控制u*(k),使性能指标J为极小.,建立增广指标泛函,式中(k+1)为n维拉格朗日乘子向量序列,离散哈密而顿函数序列H为,由于x(0)给定, x(0)=0,令,可得J取极值的必要条件为:,正则方程,边界条件与横截条件:,控制方程:,*特别的当终端状态有等式约束时,横截条件改为:,*当u(k)有不等式约束时,不成立,此时最优控制序列对应的H函数序列为绝对极小值,即:,例 2,设离散状态方程及边界条件为,

7、试用离散极小值原理求最优控制序列使性能指标,取极小值,并求出最优状态序列.,解,伴随方程,控制方程,状态方程:,列写结果如下,4-3极小值原理的应用1:最小时间控制(时间最优控制),设线性定常系统的状态方程,其中,控制向量u(t)受不等式约束,寻求最优控制u*(t),使系统从已知的初始状态转移到终端状态,tf 自由,并使性能指标,为极小,构造哈密尔顿函数:,根据极小值原理,最优控制的必要条件为:,正则方程,边界条件,极值条件,设,则,设各控制分量相互独立,则有,在约束条件,下的最优控制为:,由此可知,当*T(t)bj0 时,可以找出确定的u*j(t) 来,并且它们都为容许控制的边界值.当*T(

8、t)bj 穿过零点时, u*j(t)由一个边界值切换到另一个边界值.如果*T(t)bj 在某一时间区间内保持为零,则u*j(t)为不确定值,这种情况称为奇异问题或非平凡问题,相应的时间区段称为奇异区段.当整个时间区间内不出现奇异区段时,则称为非奇异问题或平凡问题,对于平凡问题,有以下几个定义及定理,Bang-Bang原理,若线性定常系统,属于平凡情况,则其最短时间控制为,u*(t)的各个分量都是时间的分段恒值函数,并均取边界值,称此为Bang-Bang原理.,Bang-Bang原理也适用于下列一类非线性系统, 最短时间控制存在定理,若线性定常系统,完全能控,矩阵A的特征值均具有非正实部,控制变

9、量满足不等式约束|u(t)|M,则最短时间控制存在., 最短时间控制的唯一性定理,若线性定常系统,属于平凡情况,若时间最优控制存在,则必定是唯一的.,开关次数定理,若线性定常系统,控制变量满足不等式约束|u(t)|M,矩阵A的特征值全部为实数, 若最短时间控制存在.则必为Bang-Bang控制,并且每个控制分量在两个边界值之间的切换次数最多不超过n-1次.,例 3,设系统的状态方程为,边界条件:,控制变量u(t)的不等式约束 |u(t)|1,性能指标,求最优控制u*(t),使 J 为最小.,解:,由于A具有两个零特征值,满足非正实部的要求,且,系统能控,因而最优时间控制存在,如果系统属于平凡情

10、况,则最优控制是唯一的,开关换向次数最多只有一次.,伴随方程,解得,极值条件,最优控制规律为,当u(t)=+1时,状态方程的解为:,最优轨迹方程:,当u(t)=-1时,状态方程的解为:,最优轨迹方程,两族抛物线中,各有半支抛物线引向原点,由这两条半支抛物线所组成的曲线AOB称为开关曲线:,讨论不同初始状态的最优控制方案,有四种情况,综上所述,最优控制规律为,上述控制规律的工程实现方法,2:最小燃料消耗控制,最小燃料控制问题,性能指标,对于双积分模型的最小燃料消耗控制问题,描述如下:,设系统状态方程为,控制约束为,性能指标,求最优控制,使J为极小,其中tf 给定,根据,最优控制规律,伴随方程为:

11、,状态方程的解为,上述方程和边界条件联立,可求出,由此可见,最小燃料消耗控制是一种开关型控制,可采用理想的三位式继电器作为控制器.,例 4,已知系统状态方程及初始条件为:,试求最优控制,使性能指标,取极小值,并分段求出最优轨线,解,本题属于终端状态自由,有末值性能指标要求的最小燃料消耗问题,由,伴随方程为,横截条件为,从而得,解此方程,3:最小能量控制,最小能量控制问题指在控制过程中,控制系统的能量消耗为最小,与最小燃料消耗问题类似,也只有在有限时间内有意义.,设系统状态方程为,控制约束,终端状态,给定,要求确定最优控制,使性能指标,为极小,伴随方程:,引入开关函数,的列向量,即,由极小值原理知,为极小,即应使,为极小,令,最小能量控制的控制规律为,例 5,设系统状态方程及边界条件为,试确定最优控制,使性能指标,取极小值.,解:,由极值条件知:,由伴随方程,由于终端状态固定,不能有横截条件确定c1和c2需要试探确定.通常最小能量控制问题的控制量较小,首先选择线性段函数,代入状态方程并考虑到初始条件,解得,于是最优控制为,约束条件,最优轨线,最优性能指标,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号