《数学:第七章平面直角坐标系复习ppt课件.pptx》由会员分享,可在线阅读,更多相关《数学:第七章平面直角坐标系复习ppt课件.pptx(37页珍藏版)》请在三一办公上搜索。
1、第七章 平面直角坐标系(复习一),1,2,3,-1,-2,-3,y,x,1,2,3,-1,-2,-3,-4,O,在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系.,A点的坐标,记作A( 2,1 ),一:由点找坐标,规定:横坐标在前, 纵坐标在后,二:由坐标找点,B( 3,-2 )?,由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。,B,(1)点的坐标是(,),则点在第 象限;,四,一或三,(3)若点(x,y)的坐标满足 xy,且在x轴方,则点在第 象限;,二,巩固练习1:由坐标找象限。,温馨提示:判断点的位置,关键
2、抓住象限内点的 坐标的符号特征.,(2)若点(x,y)的坐标满足xy,则点在第 象限;,(4)若点A的坐标为(a2+1, -2b2),则点A在第_象限.,四,第四象限,若点P(x,y)在第一象限,则 x 0,y 0,若点P(x,y)在第二象限,则 x 0,y 0,若点P(x,y)在第三象限,则 x 0,y 0,若点P(x,y)在第四象限,则 x 0,y 0,三:各象限点坐标的符号,第一象限,第三象限,第二象限,1.点的坐标是(,),则点在第 象限,四,一或三,3. 若点(x,y)的坐标满足 xy,且在x轴上方,则点在第 象限,二,三:各象限点坐标的符号,注:判断点的位置关键抓住象限内点的 坐标
3、的符号特征.,4.若点A的坐标为(a2+1, -2b2),则点A在第_象限.,2.若点(x,y)的坐标满足xy,则点在第 象限;,四,第四象限,第一象限,第三象限,第二象限,A(3,0)在第几象限?,注:坐标轴上的点不属于任何象限。,四:坐标轴上点的坐标符号,巩固练习2:坐标轴上点的坐标,(1)点P(m+2,m-1)在x轴上,则点P的坐标是 .,( 3, 0 ),(2)点P(m+2,m-1)在y轴上,则点P的坐标是 .,( 0, -3 ),(3)点P(x,y)满足 xy=0, 则点P在 .,x 轴上 或 y 轴上,注意: 1. x轴上的点的纵坐标为0,表示为(x,0), 2. y轴上的点的横坐
4、标为0, 表示为(0,y)。,原点(0,0)既在x轴上,又在y轴上。,四:坐标轴上点的坐标符号,1.点P(m+2,m-1)在x轴上,则点P的坐标是 .,( 3, 0 ),2.点P(m+2,m-1)在y轴上,则点P的坐标是 .,( 0, -3 ),3. 点P(x,y)满足 xy=0, 则点P在 .,x 轴上 或 y 轴上,4.若,则点p(x,y)位于 ,y轴(除(0,0)上,注意: 1. x轴上的点的纵坐标为0,表示为(x,0), 2. y轴上的点的横坐标为0, 表示为(0,y)。,原点(0,0)既在x轴上,又在y轴上。,(2). 若AB y轴,则A( m, y1 ), B( m, y2 ),(
5、1). 若AB x 轴,则A( x1, n ), B( x2, n ),五:与坐标轴平行的两点连线,1. 已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。,-,2. 已知点A(m,-2),点B(3,m-1),且直线ABy轴,则m的值为 。,3,已知点A(10,5),B(50,5),则直线AB的位置特点是( )A.与x轴平行 B.与y轴平行C.与x轴相交,但不垂直 D.与y轴相交,但不垂直,A,中考链接:与坐标轴平行的直线上的点,(1). 已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。,-,(2). 已知点A(m,-2)、点B(3,m-1),且直
6、线ABy轴,则m的值为 。,3,(1). 若点P在第一、三象限角的平分线上,则P( m, m ).,(2). 若点P在第二、四象限角的平分线上则P( m, -m ).,六:象限角平分线上的点,3.已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。,2.已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。,1.已知点A(2,y ),点B(x ,5 ),点A、B在一、三象限的角平分线上, 则x =_,y =_;,5,2,(1,1),变式:到两坐标轴的距离相等,(4,4)或(2,2),(4,4)或(2,2),特殊位置的点的坐标特点: (1)第一、三象限夹角平分线上的点:
7、 横 纵坐标 。 第二、四象限夹角平分线上的点:横纵坐标 。 (2)与x轴平行(或与y轴垂直)的直线上的点: 坐标都相同 。与y轴平行(或与x轴垂直)的直线上的点: 坐标都相同。,相同,互为相反数,横,纵,中考链接:(象限角平分线上的点),(2).已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。,(1).已知点A(2,y ),点B(x ,5 ),点A、B在一、三象限的角平分线上, 则x =_,y =_;,5,2,A( -1, ,1 ),(1)点(a, b )关于X轴的对称点是( ),a, -b,- a, b,-a, -b,(2)点(a, b )关于Y 轴的对称点是( ),(3)
8、点(a, b )关于原点的对称点是( ),七:关于坐标轴、原点的对称点,1.已知A、B关于x轴对称,A点的坐标为(3,2),则B的坐标为 。,(3,-2),2.若点A(m,-2),B(1,n)关于y轴对称,m= ,n= .,-,-,3.已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。,关于谁谁不变 另一个互为相反数,关于原点 横纵坐标都互为相反数,P(a,b),A(a,-b),B(-a,b),C(-a,-b),对称点的坐标,(1)关于x轴对称的点:横坐标 ,纵坐标 。 (2)关于y轴对称的点:纵坐标 、横坐标 。 (3)关于原点对称的点 : 横坐标 , 纵坐标
9、。,4. 特殊位置的点的坐标特点:,相同,互为相反数,相同,互为相反数,互为相反数,互为相反数,1. 点( x, y )到 x 轴的距离是,2. 点( x, y )到 y 轴的距离是,八:点到坐标轴的距离,1.若点的坐标是(- 3, 5),则它到x轴的距离是 ,到y轴的距离是 ,2若点在x轴上方,y轴右侧,并且到 x 轴、y 轴距离分别是,个单位长度,则点的坐标是 ,(4,2),3点到x轴、y轴的距离分别是,,则点的坐标可能为 .,(1,2)、(1,-2)、(-1,2)、(-1,-2),到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,平面直角坐标系的应用,.确定点的位置,.求平面图
10、形的面积,.用坐标表示平移,.,.,.,.,.,北,哲商小学,崇和门,临海中学,中心小学,台州医院,x,y,O,你能确定图中的各个位置吗?,想一想!,1、如图是某市市区几个旅游景点的平面示意图,(1)选取某一景点为坐标原点,建立平面直角坐标系;(2)在所建立的平面直角坐标系中,写出其余各景点的坐标。,约定:选择水平线为x轴,向右为正方向;选择竖直线为y轴,向上为正方向,7、在平面直角坐标系中,将点(x, y)向右 平移a个单位长度,可以得到对应点 .将点(x, y)向上 平移b个单位长度,可以得到对应点,(或向左),(或(x-a,y),(或(x,y-b),(或向下),(x+a,y),(x,y+
11、b),返回,可以简单地理解为: 左、右平移_坐标不变, _坐标变,变化规律是_减_加, 上下平移_坐标不变, _坐标变, 变化规律是_减 _加。例如:当P(x ,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为 。,(1),0,1,2,3,4,-,1,-,2,-,3,-,4,1,2,-,1,-,2,-,3,x,y,1,2,3,4,-,1,-,2,-,3,-,4,1,2,-,1,-,2,-,3,x,y,(3),0,(2),小,结,(1).图(2)、图(3)中的三角形是由图(1)中的三角形经过怎样的平移的得到的?,(2).图(2)图(3)中直角三角形的顶点坐标与图(1)比较分别经历了怎样的
12、变化?,抢答题:,(三)、,看谁反应快?,1 、 在平面直角坐标系中,有一点P(-,),若将P:,(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_。,考考你,考考你,比一比,看谁反应快?,2、如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向_平移_个单位长度得到点B;将点B向_平移_个单位长度得到点A 。,3、如果P、Q的坐标分别为P(-3,-5),Q(2,-5),,将点P向_平移_个单位长度得到点Q;将点Q向_平移_个单位长
13、度得到点P。,4、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是。,5、点P(a-1,a2-9)在x轴负半轴上,则P点坐标是。,6、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。,7、直角坐标系中,在y轴上有一点p ,且 OP=5,则P的坐标为,(3 ,-2),(-4 ,0),3个单位,4个单位,(-3 ,-1),(0 ,5)或(0 ,-5),比一比,看谁反应快?,考考你,已知点A(6,2),B(2,4)。求AOB的面积(O为坐标原点),典型例题,例3,C,D,7.四边形(-2,1),B(3,-1),C
14、(2,4),D(-1,2)将四边形ABCD向右平移个单位,再向上平移个单位,(1)求得到的另一个四边形各顶点的坐标,(2).移动后的四边形的面积,A,B,C,D,A,B,C,D,E,F,8.求四边形ABCD的面积,9.求三角形ABC的面积,A,B,O,7. 在平面直角坐标系中,有一点P(-4,2),若将P:,(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_。,(-6,2),(-1,2),(-4, -2),(1,5),8、点P(x,y)在第四
15、象限,且|x|=3,|y|=2,则P点的坐标是。,9、点P(a-1,a2-9)在x轴负半轴上,则P点坐标是。,10、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。,11、直角坐标系中,在y轴上有一点p ,且 OP=5,则P的坐标为,(3 ,-2),(-4 ,0),3个单位,4个单位,(-3 ,-1),(0 ,5)或(0 ,-5),y,A,B,C,8.已知,如右图ABC 三个顶点的坐标分别是A(1,4)、 B(-4,0)、C(2,0).(1)、ABC的面积是 (2)、将ABC向左平移三个单位后,点A、B、C的坐标分别变为_,
16、_,.(3)、将ABC向下平移三个单位后,点A、B、C的坐标分别变为_,_,.,(-2,4),12,(-7,0),(-1,0),(-4,-3),(1,1),(2,-3),O,(1,4),(-4,0),(2,0),考考你,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,13求出三角形 A1B1C1的面积。,D,E,分析:可把它补成一个梯形减去两个三角形。,14、如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5)。(1)求三角形ABC的面积;(2)如果将三角形AB
17、C向上平移2个单位长度,得三角形A1B1C1,再向右平移3个单位长度,得到三角形A2B2C2。试求出A2、B2、C2的坐标;(3)三角形A2B2C2与三角形ABC的大小、形状有什么关系。,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,13求出三角形 A1B1C1的面积。,D,E,分析:可把它补成一个梯形减去两个三角形。,考考你,比一比,看谁反应快?,2、如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向_平移_个单位长度得到点B;将点B向_平移_个单位长度得到点A 。,3、如果P、Q的坐标分别为P(-3,-5),Q(2,-5),,将点P向_平移_个单位长度得到点Q;将点Q向_平移_个单位长度得到点P。,