《抛物线复习课精选教学课件.ppt》由会员分享,可在线阅读,更多相关《抛物线复习课精选教学课件.ppt(18页珍藏版)》请在三一办公上搜索。
1、2023年1月4日星期三,抛物线复习课,高中二年级数学公开课,2023年1月4日星期三,【知识回顾】,抛物线定义,抛物线的标准方程和几何性质,平面内与一个定点F和一条定直线L的距离相等的点的轨迹叫做抛物线。,你还记得吗?,2023年1月4日星期三,1.抛物线 的焦点坐标是()。(A)(B)(C)(D),【训练一】,A,D,2.坐标系中,方程 与 的曲线是()(A)(B)(C)(D),2023年1月4日星期三,3.动点P到直线x+4=0的距离减它到M(2,0)的距离之差等于2,则P的轨迹是,其方程为。,4.过抛物线 的焦点作直线交抛物线于 两点,如果 那么 为。,抛物线,y2=8x,8,2023
2、年1月4日星期三,l1,l2,【例题1】,分析:1.如何选择适当的坐标系。2.能否判断曲线段是何种类型曲线。3.如何用方程表示曲线的一部分。,如图所示,直线L1与L2相交于M点L1L2,NL2,以A,B为端点的曲线段C上的任一点到L1的距离与到点N的距离相等,为锐角三角形,,建立适当坐标系,求曲线C的方程。,2023年1月4日星期三,l1,l2,解法一:,由图得,,曲线段C的方程为:,即抛物线方程:,如图所示,直线L1与L2相交于M点L1L2,NL2,以A,B为端点的曲线段C上的任一点到L1的距离与到点N的距离相等,为锐角三角形,,建立适当坐标系,求曲线C的方程。,建立如图所示的直角坐标系,原
3、点为O(0,0),O,,,2023年1月4日星期三,l1,l2,解法二:,曲线段C的方程为:,如图所示,直线L1与L2相交于M点L1L2,NL2,以A,B为端点的曲线段C上的任一点到L1的距离与到点N的距离相等,为锐角三角形,,建立适当坐标系,求曲线C的方程。,建立如图所示的直角坐标系,原点为O(0,0),O,2023年1月4日星期三,y,x,B,A,M,N,Q,曲线段C的方程为:,2023年1月4日星期三,【例题2】已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。,x,o,y,F,A,B,M,解:,2023年1月4日星期三,【训练二】,1.已知M为抛物线 上一动点,F为抛物线
4、的焦点,定点P(3,1),则 的最小值为()(A)3(B)4(C)5(D)6,2.过点(0,2)与抛物线 只有一个公共点的直线有()(A)1条(B)2条(C)3条(D)无数多条,B,C,2023年1月4日星期三,3.过抛物线 的焦点F作一直线交抛物线于P、Q两点,若PF与FQ的长分别是()(A)2a(B)(C)4a(D),y,x,F,4.已知A、B是抛物线 上两点,O为坐标原点,若 的垂心恰是此抛物线的焦点,则直线AB的方程是:()(A)(B)(C)(D),F,.,y,x,C,D,2023年1月4日星期三,【总结】,1.灵活应用抛物线的定义解决相关题目,2.建立适当的坐标系,3.不同标准方程的
5、几何性质是易混点,性质的应用是难点,2023年1月4日星期三,【思考题】,在抛物线y2=64x上求一点,使它到直线:4x+3y+46=0的距离最短,并求此距离。,分析:,抛物线上到直线距离最短的点,是和此直线平行的切线的切点。,y,x,y2=64x 4x+3y+46=0,解:,无实根,直线与抛物线相离,设与4x+3y+46=0平行且与y2=64x相切的直线方程为y=-4/3 x+b,L,P,2023年1月4日星期三,则由,y=-4/3 x+by2=64x,消x化简得y2+48y-48b=0,=482-4(-48b)=0,b=-12,切线方程为:y=-4/3 x-12,y=-4/3 x-12 y
6、2=64x,解方程组,得,x=9 y=-24,切点为P(9,-24),2023年1月4日星期三,切点P到的距离d=,抛物线y2=64x到直线:4x+3y+46=0有最短距离的点为P(9,-24),最短距离为2。,2023年1月4日星期三,欢迎各位老师和同学提出您的宝贵意见,谢谢!,再见!,2023年1月4日星期三,抛物线复习课,高中二年级数学公开课,小时候,我可以在母亲的背上无忧无虑的长大,是母亲编织了女儿的梦,点燃了心中那盏灯,伴我走过人生那坎坷的路程。我想不起病重的母亲是怎样背着我走路,我是怎样在母亲背上长大,可想而知,有病的母亲比健康的人更艰难。是母亲让我学会了人之初,做人做事的道理。当
7、时我不懂母亲的心,她的爱她的温柔,她的关怀和牵挂,不懂事的我在母亲的包容下慢慢地长大,当我知道和读懂母亲的时候,母亲含着眼泪,带着多少担忧与牵挂永远的离开了我。我唯一的靠山倒了,但是母亲教会了我在逆境中学会坚强,勇敢地面对困难和失败,适应任何环境而求生存,这就是我的母亲留给我的无比珍贵的财富和爱。母亲虽然走了,可她永远活在我的心里,我永远怀念她,她是我地唯一,无人取代,也是我的最爱,更是难忘的爱!我想不起小姨妈在母亲有病的时候是怎样抱着我,还是背着我,我不知道,从小姨妈对那段往事的回忆中,我才知道别人对她的冷眼,天寒地冷的无奈我才知道她的棉衣前襟是明亮发光的,而且经常是湿地;才知道烧无烟煤时熏
8、黑了的脸上那双有黑有大的眼睛的明亮。那时候小姨妈只有十六岁,一个失去父母关爱的小女孩,能在姐姐病重的时候撑起一个家,还带着一个不满周岁的孩子,可想而知,这是多么不容易的事,每当小姨妈讲起那段往事,我就想起那苦难无助地童年,小姨妈无私的爱,让我永远难忘。小姨妈的人生很苦,很少有人去关她,可是她却为我们这些没有母爱的孩子现出了她的青春和所有的爱。我母亲去世后小姨妈也经常照顾我,关心我。她不但关爱我,还有我的三姨家兄弟妹们。还在我母亲没有去世时,我的三姨妈由于有病去世了,留下四个孩子,最小的才两岁,她为了照顾这四个孩子,就和我三姨父结婚,把他们养大成人,现在孩子们都有了自己的家,可是小姨妈由于劳累过
9、度,而病倒了,现在病在床上不能自理,当我今年回家看到小姨妈时,我很惭愧,她为我们付出的太多了,可我们又给了她什么,她看到我时那含泪的笑容,我才体会到母爱的无私和伟大,也许她不求我们什么,能常回家看看足矣,可我们却做不到,当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师戴尔泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。那年冬天,猎人
10、带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不到!”猎狗听了很不服气地辩解道:“我已经尽力而为了呀!”再说兔子带着枪伤成功地逃生回家了,兄弟们都围过来惊讶地问它:“那只猎狗很凶呀,你又带了伤,是怎么甩掉它的呢?”兔子说:“它是尽力而为,我是竭尽全力呀!它没追上我,最多挨一顿骂,而我若不竭尽全力地跑,可就没命了呀!”泰勒牧师讲完故事之后,又向全班郑重其事地承诺:谁要是能背出圣经马太福音中第五章到第七章的全部内容,他就邀请
11、谁去西雅图的“太空针”高塔餐厅参加免费聚餐会。圣经马太福音中第五章到第七章的全部内容有几万字,而且不押韵,要背诵其全文无疑有相当大的难度。尽管参加免费聚餐会是许多学生梦寐以求的事情,但是几乎所有的人都浅尝则止,望而却步了。几天后,班中一个11岁的男孩,胸有成竹地站在泰勒牧师的面前,从头到尾地按要求背诵下来,竟然一字不漏,没出一点差错,而且到了最后,简直成了声情并茂的朗诵。泰勒牧师比别人更清楚,就是在成年的信徒中,能背诵这些篇幅的人也是罕见的,何况是一个孩子。泰勒牧师在赞叹男孩那惊人记忆力的同时,不禁好奇地问:“你为什么能背下这么长的文字呢?”这个男孩不假思索地回答道:“我竭尽全力。”16年后,这个男孩成了世界著名软件公司的老板。他就是比尔盖茨。泰勒牧师讲的故事和比尔盖茨的成功背诵对人很有启示:每个人都有极大的潜能。正如心理学家所指出的,一般人的潜能只开发了28左右,像爱因斯坦那样伟大的大科学家,也只开发了12左右。一个人如果开发了50的潜能,就可以背诵400本教科书,可以学完十几所大学的课程,还可以掌握二十来种不同国家的语言。这就是说,我们还有90的潜能还处于沉睡状态。谁要想出类拔萃、创造奇迹,仅仅做到尽力而为还远远不够,必须竭尽全力才行。,