勾股定理单元复习ppt课件.ppt

上传人:小飞机 文档编号:2118416 上传时间:2023-01-13 格式:PPT 页数:33 大小:1.17MB
返回 下载 相关 举报
勾股定理单元复习ppt课件.ppt_第1页
第1页 / 共33页
勾股定理单元复习ppt课件.ppt_第2页
第2页 / 共33页
勾股定理单元复习ppt课件.ppt_第3页
第3页 / 共33页
勾股定理单元复习ppt课件.ppt_第4页
第4页 / 共33页
勾股定理单元复习ppt课件.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《勾股定理单元复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《勾股定理单元复习ppt课件.ppt(33页珍藏版)》请在三一办公上搜索。

1、勾股定理单元复习,英吉沙县实验中学 艾麦提阿孜,教学目标,1.进一步理解勾股定理和勾股定理的逆定理,会运用勾股定理和逆定理解决简单问题。2.在题组训练的过程中,引导学生总结出勾股定理的作用和解题基本步骤,培养学生的归纳总结能力,让学生体会数形结合思想,方程思想和转化思想在解决问题中的作用。3.养成把自己的知识建立联系的思维习惯,积极参与数学活动,在活动中学会思考,讨论,交流与合作。,教学重难点,重点:用勾股定理和勾股定理的逆定理解决简单问题,难点:能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程。,一、知识要点,如果直角三角形两直角边分别为a,b,斜

2、边为c,那么,勾股定理,a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.,勾股逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,例:在RtABC中,C=90.(1)若a=3,b=4,则c=;(2)若c=34,a:b=8:15,则 a=,b=;,典型例题,典型例题,1.已知三角形的三边长为 9,12,15,则这个三角形的最大角是 度;,2.若ABC中,AB=5,BC=12,AC=13,则AC边上的高长为;,例2,典型例题,3,勾股数,满足a2+b2=c2的三个正整数,称为勾股数,例3请完成以下未完成的勾股数:(1)8、15、_;(2)10、26、

3、_(3)7、_、25,典型例题,例4.观察下列表格:,请你结合该表格及相关知识,求出b、c的值.即b=,c=,例5、如图,四边形ABCD中,AB3,BC=4,CD=12,AD=13,B=90,求四边形ABCD的面积,典型例题,3,4,12,13,变式 有一块田地的形状和尺寸如图所示,试求它的面积。,A,B,C,D,5,例6、假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A 到宝藏埋藏点B的距离是多少千米?,规律,专题一 分类思想,1.直角三角形中,已知两边长是

4、直角边、斜边不知道时,应分类讨论。,2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。,2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC,25,或7,10,17,8,17,10,8,专题二 方程思想,直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。,规律,1.小东拿着一根长竹竿进一个宽为米的城门,他先横拿着进不去,又竖起来拿,结果竹竿比城门高米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少?,练习:,x,1m,(x+1),3,在一棵树的10米高处B有两只猴子,其中一只猴子爬下树走到离树2

5、0米的池塘A,另一只猴子爬到树顶D后直接跃向池塘的A处,如果两只猴子所经过距离相等,试问这棵树有多高?,.,D,B,C,A,专题三 折叠,折叠和轴对称密不可分,利用折叠前后图形全等,找到对应边、对应角相等便可顺利解决折叠问题,规律,例1、如图,一块直角三角形的纸片,两直角边AC=6,BC=8。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长,A,C,D,B,E,第8题图,x,6,x,8-x,4,6,练习:三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕CE,求三角形ACE的面积,A,B,C,D,D,C,A,D1,

6、E,13,5,12,5,12-x,5,x,x,8,例1:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求 1.CF 2.EC.,A,B,C,D,E,F,8,10,10,6,X,8-X,4,8-X,练习、如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕。若AB=9,BC=3,试求以折痕EF为边长的正方形面积。,1.几何体的表面路径最短的问题,一般展开表面成平面。,2.利用两点之间线段最短,及勾股定理求解。,专题四 展开思想,规律,例1:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是()

7、A.20cm B.10cm C.14cm D.无法确定,B,B,8,O,A,2,蛋糕,A,C,B,周长的一半,例2 如图:正方体的棱长为cm,一只蚂蚁欲从正方体底面上的顶点A沿正方体的表面到顶点C处吃食物,那么它需要爬行的最短路程的长是多少?,16,10,20,F,E,A,E,C,B,20,15,10,5,1.几何体的内部路径最值的问题,一般画出几何体截面,2.利用两点之间线段最短,及勾股定理求解。,专题五 截面中的勾股定理,规律,小明家住在18层的高楼,一天,他与妈妈去买竹竿。,买最长的吧!,快点回家,好用它凉衣服。,糟糕,太长了,放不进去。,如果电梯的长、宽、高分别是1.5米、1.5米、2.2米,那么,能放入电梯内的竹竿的最大长度大约是多少米?你能估计出小明买的竹竿至少是多少米吗?,x,X2=1.52+1.52=4.5,AB2=2.22+X2=9.34,AB3米,练习:一种盛饮料的圆柱形杯,测得内部底面半径为2.5,高为12,吸管放进杯里,杯口外面至少要露出4.6,问吸管要做多长?,感悟与反思,1、通过这节课的学习活动你有哪些收获?,2、对这节课的学习,你还有什么想法吗?,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号