《空间点直线平面之间的位置关系ppt课件.ppt》由会员分享,可在线阅读,更多相关《空间点直线平面之间的位置关系ppt课件.ppt(51页珍藏版)》请在三一办公上搜索。
1、,2.1,空间点、直线、平面之间的位置关系,主要内容,2.1.2空间中直线与直线之间的位置关系,2.1.3空间中直线与平面之间的位置关系,2.1.1 平面,2.1.1,平 面,构成图形的基本元素,点、线、面,点无大小,线无粗细,面无厚薄,点,直线,平面,可无限延伸的,平面是可无限延展的,平面的符号表示,1.希腊字母:平面,平面,平面,平面的表示,平面的表示,两个相交平面的画法和表示,平面和平面相交于一条直线a,被遮住的部分画虚线,平面平面=直线a,平面的表示,直线和平面都可以看成点的集合,“点P在直线l上”,“点A在平面内”,用集合符号表示 点与直线、点与平面、直线与平面的关系,“点P在直线l
2、 外”,“点A在平面外”,直线 l 在平面内,或者说平面经过直线 l,直线 l 在平面外.,平面的基本性质,公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.,思考1:如何让一条直线在一个平面内?,作用:为判断直线与平面的位置关系提供依据,集合符号表示,平面经过这条直线,平面的基本性质,公理2 过不在一条直线上的三点,有且只有一个平面.,思考2:经过两点可以确定一条直线,那么经过几个点可以确定一个平面呢?,作用:判断几个点共面或直线在同一个平面内,集合符号表示,“不共线的三点确定一个平面”,已知A、B、C三点不共线,则存在惟一平面,使得A、B、C,平面的基本性质,思考3:如果两
3、个平面有一个公共点,那么还会有其它公共点吗?如果有这些公共点有什么特征?,公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.,作用:判断两个平面位置关系的基本依据,例题,例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.,解:1)A,B,=l,a=A,a=B,2)a,b,=l,al=P,bl=P,ab=P,2.1.2,空间中直线与直线之间的位置关系,两条直线的位置关系,思考1:同一平面内两条直线有几种位置关系?空间中的两条直线呢?,C,1)教室内日光灯管所在直线与黑板左右两侧所在直线的位置关系如何?,2)天安门广场上,旗杆所在直线与长安街所在直线的位置
4、关系如何?,两条直线的位置关系,定义 不同在任何一个平面内的两条直线叫做异面直线.,异面直线的图示,两条直线的位置关系,A.空间中既不平行又不相交的两条直线;B.平面内的一条直线和这平面外的一条直线;C.分别在不同平面内的两条直线;D.不在同一个平面内的两条直线;E.不同在任何一个平面内的两条直线.,关于异面直线的定义,你认为下列哪个说法最合适?,问题,两条直线的位置关系,空间中的直线与直线之间有三种位置关系:,不同在任何一个平面内,没有公共点,同一平面内,有且只有一个公共点;,同一平面内,没有公共点;,如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所
5、在直线是异面直线的有多少对?,探究,直线EF 和直线HG,直线AB 和直线CD,直线AB 和直线HG,答:3对,平行直线,如图,在长方体ABCDABCD中,BBAA,DDAA,那么BB与DD平行吗?,观察,答:平行,平行直线,公理4 平行于同一直线的两条直线互相平行.,空间中的平行线具有传递性,如果a/b,b/c,那么a/c,三条平行线共面,三条平行线不共面,平行直线,已知三条直线两两平行,任取两条直线能确定一个平面,问这三条直线能确定几个平面?,三条平行线共面,三条平行线不共面,问题,平行直线,例2 如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形E
6、FGH是平行四边形.,F,G,D,A,E,B,C,H,在上例中,如果再加上条件AC=BD,那么四边形EFGH 是什么图形?,探究,答:四边形EFGH是菱形,等角定理,在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”空间中,结论是否仍然成立?,思考1,如图,四棱柱ABCD-ABCD的底面是平行四边形,ADC与ADC,ADC与BAD的两边分别对应平行,这两组角的大小关系如何?,思考2:,ADC=ADC,ADC+BAD=1800,等角定理,定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.,异面直线所成的角,思考,在同一平面内两条相交直线形成
7、四个角,常取较小的一组角来度量这两条直线的位置关系,这个角叫做两条直线的夹角.在空间中怎样度量两条异面直线的位置关系呢?,a,平面内两条相交直线,空间中两条异面直线,异面直线所成的角,已知两条异面直线a,b,经过空间任一点O作直线,把 与 所成的锐角(或直角)叫做异面直线a与b所成的角,异面直线所成的角,我们规定两条平行直线的夹角为0,那么两条异面直线所成的角的取值范围是什么?,如果两条异面直线所成角为900,那么这两条直线垂直.,探究,记直线a垂直于b为:ab,异面直线所成的角,探究,(1)在长方体 中,有没有两条棱所在的直线是相互垂直的异面直线?,(2)如果两条平行直线中的一条与某一条直线
8、垂直,那么,另一条直线是否也与这条直线垂直?,(3)垂直于同一条直线的两条直线是否平行?,垂直,异面直线所成的角,例3 已知正方体,(1)哪些棱所在直线与直线 是异面直线?,(2)直线 和 的夹角是多少?,(3)哪些棱所在的直线与直线 垂直?,解:(1)由异面直线的定义可知,,棱 所在的直线分别与直线 是异面直线,(2)由 可知,,为,异面直线 与 的夹角,所以 与 的夹角为,在如图所示的长方体中,AB=,且AA1=1,求直线BA1和CD所成角的度数.,30O,练习1,本节小结,(1)空间直线的三种位置关系,(2)平行线的传递性,(3)等角定理,(4)异面直线所成的角,基本知识,基本方法 把空
9、间中问题通过平移转化为平面问题.,2.1.3,空间中直线与平面之间的位置关系,直线与平面,思考?,1)一支铅笔所在的直线与一个作业本所在的平面,可能有几种关系?,直线与平面,直线和平面的位置关系有且只有三种,(1)直线在平面内,有无数个公共点,a,记为:a,直线与平面,(2)直线与平面相交,有且只有一个公共点,a,记为:a=A,A,直线与平面,(3)直线与平面平行,没有公共点,a,记为:a/,直线与平面,直线与平面相交或平行的情况统称为直线在平面外,记为:a,a,a/,a,a=A,A,或,主要内容,直线与平面的位置关系 直线在平面内 直线与平面相交 直线与平面平行,直线在平面外,直线与平面,例
10、1.下列命题中正确的个数是()1)若直线 l 上有无数个点不在平面内,则 l/2)若直线 l 与平面平行,则 l 与平面内的任意一条直线都平行3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行4)若直线 l与平面平行,则 l与平面内的任意一条直线都没有公共点.,(A)0(B)1(C)2(D)3,B,主要内容,直线与平面的位置关系 直线在平面内 直线与平面相交 直线与平面平行,直线在平面外,平面与平面之间的位置关系,2.1.4,平面与平面之间的位置关系,思考,(1)拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?,两个平面的位置关系,两个平面的位置关系有且只有两种 两个平面平行没有公共点 两个平面相交有一条公共直线,两个平面平行或相交的画法及表示,/,m,=m,已知平面,直线a、b,且/,a,b,则直线a与直线b具有怎样的位置关系?,探究1,a,b,答:平行或异面,探究2,相交于一条交线,三条交线,三条交线,如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.,一个平面可以把空间分成几个部分?两个平面可以把空间分成几个部分?三个平面可以把空间分成几个部分?,探究3,小结,平面与平面的位置关系 平面与平面相交 平面与平面平行,