《华东师大版七年级数学下册第八章一元一次不等式PTppt课件全套.ppt》由会员分享,可在线阅读,更多相关《华东师大版七年级数学下册第八章一元一次不等式PTppt课件全套.ppt(137页珍藏版)》请在三一办公上搜索。
1、8.1认识不等式,华东师大版七年级(下册),唐老鸭,你怎么减肥了?,是吗?那我现在的体重已超过你。,设米老鼠现在体重为xkg,你能用简单的式子表示它与唐老鸭之间的体重关系吗?,X3.5,探究新知,(1)公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40Km/h,用v(Km/h)表示汽车的速度,怎样表示v和40之间的关系?,v 40,下列问题中的数量关系能用等式表示吗?若不能,应该用怎样的式子来表示?,(2)根据科学家测定,太阳表面的温度不低于6000.设太阳表面的温度为t(),怎样表示t和6000之间的关系?,t 6000,(3)小聪和小明玩跷跷板.大家都不用力时,跷跷板左低右高.
2、小聪的身体质量为p(Kg),书包的质量为2Kg,小明的身体质量为q(kg),怎样表示p,q之间的关系?,p+2q,(4)要使代数式 有意义,x的值与3之间有什么关系?,X3X3,x 3,像X3.5,p+2q,v40,t6000,x 3这样,用不等号“”),“”(或“”),“”表示不等关系的式子,叫做不等式,“”“”“”“”“”这样的符号统称为不等号,“”、“”不仅表示左右两边不等关系,还明确表示左右两边的大小;“”、“”也表示不等,前者表示“不小于”(大于或等于),后者表示“不大于”(小于或等于),“”表示左右两边不相等,你来猜猜看?,1、判断下列各式中哪些是不等式,哪些不是。x+1=2 5x
3、-31 x-6 11x-46 74 2x-y0,练一练,1.在数学表达式:3 0;x 6;x=2;y 0;x+2 x中,不等式的个数是()(A)2;(B)3;(C)4;(D)5,c,世纪公园,世纪公园的票价是:每人元,一次购票满张,每张票可少收元,公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27人去世纪公园进行活动。当班长王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏喊住了王小华,提议买30张票。但有同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?,那么,李敏的提议对不对呢?是不是真的浪费?谈谈你们的看法。,买27张票,要付款,买30张票,要付款,显
4、然120135,我们不妨一起来算一算,527135(元),430120(元),问题,这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了。,如果去世纪公园的人数较少(例如10个人)显然不值得去买30张票,还是按实际人数买票为好。现在的问题是,少于30人时,至少有多少人去公园,买30张票反而合算呢?,探索,设有x人进公园,如果x30,那么按实际人数要买 x张,付款5x(元),买30张票要付款4 30=120元,如果买30张票合算,那么应有1205x。,105,120,不合算,110,120,不合算,115,120,不合算,120,120,相等,125,120,合算
5、,130,120,合算,140,120,合算,145,120,合算,让我们一起来分析上面的问题,(x),(5x),(120),(1205X 成立吗?),(不成立),(不成立),(不成立),(不成立),(成立),(成立),(成立),(成立),(成立),由上表可见,当x_,时,不等式120 5x成立,也就是说至少要x=_时不等式120 5x成立,至少要有_ 人进公园时,买30张票合算.,25,26,,25,25,不等式1205x中含有未知数x,能使不等式成立的未知数的值,叫做不等式的解(solution of inequality)。,如上例中,x25,26,27,等都是1205x的解,而x24,
6、23,22,21则都不是不等式的解。,聪明的一休,判断下列各数,哪些是不等式x+24的解,-1;-3;-2.5;0;1;2;3;3.5;4;,检验一个数是不是不等式的解,应代入不等式中检验,动动脑:,不等式的解与方程的解有什么区别?,注意:不等式的解与一元一次方程的解是有区别的不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值,(1)x的一半不小于1(2)y与4的和大于0.5(3)a是负数;(4)b是非负数;,解:,(1)0.5x-1,(2)y+40.5,(3)a0,b是非负数,就是b不是负数,它可以是正数或零,即b0或b=0,通常可以表示成b 0。,例:用不等式表示下列关
7、系,并写出两个满足不等式的数:,练习:1、用不等式表示(1)x与y的积是正数(2)t与6的和是非负数(3)x、y两数的平方差不大于0(4)a不小于1(5)y的绝对值与-8的和为负数,xy0,t+6 0,x2-y2 0,a 1,|y|-80,你聪明吗?,填空:(1)小于4的正整数有()(2)绝对值小于3的负整数有()(3)不大于3的非负整数有(),1、2、3,0、1、2、3,-1、-2,判断题:(1)不等式x10有无数个解()(2)x3的数是不等式x35的解(),相信自己是最棒的!,注意:小于或等于3的正整数或0,收获季节,通过这节课你学到了什么?,小结:,1。生活中处处存在不等关系,我们可以用
8、不等式来解决生活中的实际问题2。检验一个数是不是不等式的解,应代入不等式中检验3。注意:不等式的解与一元一次方程的解是有区别的不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值4。在解题过程中,一定要注意“负数”、“非负数”、“大于”、“小于”、“不小于”等关键性词语,只有真正理解其含义,才能正确列出不等式。,爱学数学爱数学周报,再见,华东师大版七年级下册,第8章 一元一次不等式,8.1 认识不等式,你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就是靠不断改变两端的重量对比来工作的,看一看,在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一
9、些简单机械,并把它们用到了生活实践当中,由此可见,“不相等”处处可见。从今天起,我们开始学习一类新的数学知识:不等式,不相等 处处可见,不等式:,用不等号表示不等关系的式子,“”、“”不仅表示左右两边不等关系,还明确表示左右两边的大小;“”、“”也表示不等,前者表示“不大于”(小于或等于),后者表示“不小于”(大于或等于),“”表示左右两边不相等,你来猜猜看?,1、判断下列各式中哪些是不等式,哪些不是。x+1=2 5x-31 x-6 11x-46 74 2x-y0,例:用不等式表示下列关系,并写出两个满足不等式的数:(1)x的一半不大于(2)y与3的差大于0.5(3)a是负数;(4)b是非负数
10、;,解:,(1)0.5x-,(2)y30.5,(3)a0,b是非负数,就是b不是负数,它可以是正数或零,即b0或b=0,通常可以表示成b 0。,(用不等式表示不等关系是研究不等式的基础,在表示时一定要抓住关键词语,弄清不等关系。),1、用“”或“”号填空:(1)7_5;(2)(3)4_34;(3)(4)2_(3)2;(4)|0.5|_|1000|;(5)34_14;(6)53_125;(7)63_43;(8)6(3)_4(3),2、用适当的符号表示下列关系:,(1)a是负数;(2)a是非负数;(3)a与b的和小于5;(4)x与2的差大于1;(5)x的4倍不大于7;(6)y的一半不小于3,a0,
11、a0,ab5,x21,4x7,练 一 练,y 3,1,用适当的符号表示下列关系:,(1)直角三角形斜边比它的两直角边a、b都长.,(2)x与17的和比它的5倍小.,(3)x的3倍与8的和比x的5倍大.,(4)地球上海洋面积s1大于陆地面积s2.,(5)铅球的质量m1比篮球的质量m2大.,ca,cb,3x+85x,s1s2,m1 m2,x+175x,小 测,1,你一定能行的!,注:“不大于”指的是“”,通常用 符号“”表示.,类似地,“不小于”指的是“等于或大于”.通常用符号“”表示.(读作:“大于或等于”).,等于或小于,不等关系符号,例如,x 不大于10 可以表示为 x10(读作:“x小于或
12、等于10”).,世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?,那么,究竟李敏的提议对不对呢?是不是真的浪费呢,问题一:人每人付元门票划算呢,还是按人(多算人)每人付元(优惠元)划算呢?问题二:10个人每张票元好呢,还是按个人每张票元划算呢?问题三:少于30人时,至少有多少人去公园,买30张票反而合算呢?,探索,填一填,由上表可见,当x=_时,不等式1205x成立.也就是说,少于30人时,至少
13、要有_人进公园,买30张票反而合算.,110,1205x,不成立,115,1205x,不成立,120,1205x,1205x,1205x,1205x,1205x,不成立,成立,成立,成 立,成 立,125,130,130,130,25,25,不等式1205x中含有未知数x,能使不等式成立的未知数的值,叫做不等式的解.如上例中,x25,26,27,等都是1205x的解,而x24,23,22,21则都不是不等式的解.,聪明的一休,判断下列各数,哪些是不等式x+24的解,-1;-3;-2.5;0;1;2;3;3.5;4;,检验一个数是不是不等式的解,应代入不等式中检验,不等式的解是不确定的,一般不等
14、式的解有无数个,而一元一次方程的解则是一个具体的数值.,小结:,1.生活中处处存在不等关系,我们可以用不等式来解决生活中的实际问题2.检验一个数是不是不等式的解,应代入不等式中检验3.注意:不等式的解与一元一次方程的解是有区别的不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值4.在解题过程中,一定要注意“负数”、“非负数”、“大于”、“小于”、“不小于”等关键性词语,只有真正理解其含义,才能正确列出不等式.,华东师大版七年级下册,第8章 一元一次不等式,8.2 解一元一次不等式(第1课时),一,二,三,四,六,七,“过七关斩七将”,五,1.什么叫不等式?,复习关,用不等号
15、连接的表示不等关系的式子,3.什么叫不等式的解?,2.常用的不等号有哪些?,能使不等式成立的未知数的值,常用的不等号有:、,用不等式表示:(1)x的3倍大于1;(2)y与5的差小于零;(3)x与3的和不大于6。,好样的!,二,三,四,七,五,六,探索关,下列各数中,哪些是不等式x+35的解?l,0,2,2.5,4,3.5,4,4.5,,由此可以看出不等式x+35的解有许多个.,不等式x+35,除了上面提到的解外,你还能说出它的一些解?,真不错!,三,四,七,五,六,目标关,1、知道不等式的解与解集定义。2、会表示不等式的解集。,继续革命!,四,七,五,六,自学关,自学P43的内容:(5分钟)1
16、、不等式的解有多少个?2、不等式的解集是什么?3、如何表示不等式的解集,你有几种方法表示?,有前途!,七,五,六,小试牛刀关,(1)方程3x6的解有几个?(2)不等式3x6的解有几个?,(3)我们知道有理数都可以用数轴上的点来表示,那么不等式3x6的解集x2是否也可以借助数轴直观地表示出来呢?你能试一下吗?,(4)如何在数轴上表示解集x 2呢?,有等号为实心,无等号为空心.,例2:判断:x=2是不等式4x9的一个解.()x=2是不等式4x9的解集.(),七,六,不要放弃,1、将下列不等式的解集在数轴上表示出来:(1)x2;(2)x2。,实力关,2、你能看出下图在数轴上所表示的不等式的解集是什么
17、吗?,七,胜利再望,(1)不等式-2x3是什么意思?你能在数轴上表示出来吗?它有哪些整数解?,智力关,(2)写出下图在数轴上所表示的不等式的解集。,呵呵,我到达了,你到了没有,凯旋归来话收获,根据“当x为任何正数时都能使不等式x+32成立”,能不能说不等式的解集为x0?为什么?,更进一步,华东师大版七年级下册,第8章 一元一次不等式,8.2 解一元一次不等式(第2课时),你能说出a与b的大小吗,你能说出b与c的大小吗,你能说出a与c的大小吗,ba,Cb,Ca,从b与a和b与c的大小跟a与c的大小关系,你能得出什么结论?,小试牛刀,若ab,bc,则ac。,不等式的传递性,你能举几个具体的例子说明
18、吗?,(2)观察:用“”填空,并找一找其中的规律.,(2)13,-1+2_3+2,-13_33;,(3)62,65_25,6(-5)_2(-5);,(4)23,(-2)6_36,(-2)(-6)_3(-6),53,5+2_3+2,52_32;,会发现:当不等式两边加或减去同一个数时,不等号的方向_,不变,当不等式的两边同乘同一个正数时,不等号的方向_;而乘同一个负数时,不等号的方向_.,不变,改变,不等式的基本性质1 不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变.(方向的含义是什么?),即 如果ab,那么a+cb+c,a-cb-c;如果ab,那么a+cb+c,a-cb-c.
19、,你用数轴上点的位置关系加以说明吗?,不访设c0,则,a,b,b+c,a+c,c,c,可见,a+cb+c,a,b,b-c,a-c,c,c,可见,a-cb-c,不等式的基本性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向,改变,必须把不等号的方向改变,如果ab,c0那么acbc,a/cb/c.如果ab,c0那么acbc,a/cb/c;,做一做:,选择适当的不等号填空:,(1)0 1,a a+1(不等式的基本性质1);(2)(a-1)2 0,(a-1)2-2-2(不等式的基本性质1)(3)若x+10,两边同加
20、上-1,得_(依据:_).(4)若2 x-6,两边同除以2,得_,依据_.(5)若-0.5 x1,两边同乘以-2,得_,依据_,x-1,不等式的基本性质1,x-3,不等式的基本性质2,X-2,不等式的基本性质3,1.若-m5,则m-5.2.如果x/y0,那么xy 0.3.如果a-1,那么a-b-1-b.4.-0.9-0.3,两边都除以(-0.3),得_.,3 1,例已知a0,试比较2a与a的大小。,解法一:21,a0,2aa(不等式的基本性质3),解法二:在数轴上分别表示2a和a的点(a0),如图.2a位于a的左边,所以2aa,想一想:还有其他比较2a与a的大小的方法吗?,2a-a=a,又 a
21、0,2a-a0,2aa(不等式的基本性质2),探究活动,比较等式与不等式的基本性质.例如,等式是否有与不等式类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比.(请与你的伙伴交流),感悟与反思,通过这节课的学习活动你有哪些收获?,华东师大版七年级下册,第8章 一元一次不等式,8.2 解一元一次不等式(第3课时),回忆:不等式的性质。不等式的性质1:如果ab,那么acbc,acbc。不等式的性质2:如果ab,并且c0,那么acbc。不等式的性质3:如果ab,并且c0,那么acbc。,1+x0 2x-15x+3,只含有一个未知数,一元一次不等式的定义,解:2x17
22、它在数轴上的表示如图所示,解:10 x6x36x 10 xx 6x 36 3x9 x3它在数轴上的表示如图所示,一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?,解:根据题意,得 2(x4)3(3x1)6,2x89x36,7x116,7x5,得 所以,当x取小于 的任何数时,代数式 与 的差大于1。,x取什么值时,代数式 的值:大于7x 小于7x 不大于7x 不小于7x,1.去分母2.去括号3.移项4.合并同类项5.系数化为1,注意:,进行“去分母”和“系数化为1”时,不等式要根据同除以(或乘以)的数的正负,决定是否改变不等号的方向。,下列解不等式过程是否正确,如果不正确请给予改
23、正。解不等式 去分母得 6x3x2(x+1)6x8去括号得 6x3x2x+26x8移项得 6x3x2xx682合并同类项得 6x16系数化为1,得 x,相信自己是最棒的!,七嘴八舌,即时演练,解不等式:,华东师大版七年级下册,第8章 一元一次不等式,8.2 解一元一次不等式(第4课时),1、数轴的三要素是_,和_。2、数轴上,越向左的点表示的数越_;向右的点表示的数越_;(填大与小)3、什么叫不等式的解?4、方程x25的解是_;5、对不等式x25,x3_它的解,x4_它的解,x2_它的解。(填是与不是),原点,单位长度,正方向,小,大,X=3,不是,是,不是,能使不等式成立的未知数的值,叫做不
24、等式的解。,复习回顾,不等式的解集:一个不等式的所有解,组成这个不等式的集合,简称为这个不等式的解集。,研究不等式的一个重要任务,就是求出不等式的解集。求不等式的解集的过程,叫做解不等式。,小贴士:,不等式的解集必须满足两个条件:1解集中的任何一个数值都使不等式成立;2解集外的任何一个数值都不能使不等式成立.,x31的解集,可以表示为_,用数轴表示为:,x-2,x25的解集,可以表示成x3,也可以在数轴上直观地表示出来,1.在数轴上表示不等式的解集,x3不包括3,在x3处画空心圆圈。,X-2包括-2,在x-2处画实心圆点。,2.尝试反馈,巩固知识,(1)不等式X2与X2的解集有什么不同?在数轴
25、上表示它们时怎样区别?分别在数轴上把这两个解集表示出来,(2)用不等式表示图中所示的解集,X2,X2,X-7.5,在数轴上表示不等式解集时,你认为需要注意些什么?,(2)确定方向,(1)确定空心圆圈或实心圆点,议一议:,温馨提醒,完成课本练习、,小结:,这节课你学了哪些内容?你有何收获或感受?,还有哪些需要老师和同学们帮你解决的问题吗?,你还有什么新的见解?,作业,华东师大版七年级下册,第8章 一元一次不等式,8.3 一元一次不等式组(第1课时),问题:现有两根木条a和b,a长10cm,b长3cm,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?,解:由题中的
26、条件可得,解不等式组得,若c的长为整数,c可能的取值为,你认为一元一次不等式组是如何得到的呢?,几个一元一次不等式合起来就组成一元一次不等式组,8cm,9cm,10cm,11cm,12cm.,动手操作:,探索与观察,运用数轴,探索不等式组,的解集与组成它的不等式、的解集有什么联系?,认真观察:根据数轴你能看出不等式组的解集吗?它与不等式组中各不等式、的解集有何联系?类似于方程组,不等式组的解集是组成它的各不等式解集的公共部分.,在同一数轴上分别表示出不等式、的解集.,注意:在数轴上表示不等式的解集时应注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.,从上图可以找出两个不等
27、式解集的公共部分,得不等式组的 解 集是:_,你能找到下面几个不等式组的解集吗?,无解,例1:解下列不等式组,解:解不等式,得,解不等式,得,把不等式和 的解集在数轴上表示出来:,所以不等式组的解集:,解:解不等式,得,解不等式,得,把不等式和 的解集在数轴上表示出来:,这两个不等式的解集没有公共部分,所以不等式组无解。,解下列不等式组,解:解不等式,得,解不等式,得,把不等式和 的解集在数轴上表示出来:,所以不等式的解集:,解:解不等式,得,解不等式,得,把不等式和 的解集在数轴上表示出来:,所以不等式的解集:,让我们一起动脑,共同完成:,试求不等式组 的解集.,解:解不等式,得 x-2 解
28、不等式,得 x 3 解不等式,得 x 6,把不等式、的解集表示在同一数轴上,如下图,所以,不等式组的解集是3 x 6。,动手画一画,一起找一找。,一元一次不等式组的解集的确定规律,(“大”大“小”小无解了),(“大”小“小”大中间找),(同小取小),(同大取大),设a、b是已知实数且ab,那么不等式组,无解,练习一1、关于x的不等式组,有解,那么m的取值范围是(),、m8 B、m8 C、m、m8,C,、如果不等式组,的解集是xa,则a_b。,例1.若不等式组,有解,则m的取值范围是_。,解:化简不等式组得,根据不等式组解集的规律,得,因为不等式组有解,所以有,2.已知关于x不等式组,无解,则a
29、的取值范围是_,解:将x-1,x2在数轴上表示出来为,要使方程无解,则a不能在的右边,及a,练习二.已知关于x不等式组,无解,则a的取值范围是,.若不等式组,有解,则m的取值范围是_。,2、关于x的不等式组,的解集为x3,则a的取值范围是()。、a3 B、a3 C、a3 D、a3,A,m 1.,a,例().若不等式组,的解集是x2,则m=_,n=_.,解:解不等式,得,m 解不等式,得,x n+1,因为不等式组有解,所以,m-2 n+1,又因为x2,所以,m=,n=,x,m-2,n+1,m-2=,n+1=,()已知关于的不等式组,的解集为x,,则n/m=,解:解不等式,得,m 解不等式,得,x
30、(nm+1),因为不等式组有解,所以m x(nm+1),又因为 x,所以,解得,所以,n/m=,解:(x+1)-5(x-)+4,解得x,由题意x的最小整数解为x,将x 代入方程,解得m=2,将m=2代入代数式,=11,方法:解不等式,求最小整数的值;将的值代入一元一次方程求出m的值将m的值代入含m的代数式,.不等式组,的解集为x3a+2,则a的,取值范围是。,.k取何值时,方程组,中的x大于1,y小于1。,.m是什么正整数时,方程,的解是非负数,.关于x的不等式组,的整数解共有5个,则a,的取值范围是。,练习三,本节知识回顾,1.由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组,2.
31、几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.,3.求不等式组的解集的过程,叫做解不等式组.,(二)解简单一元一次不等式组的方法:,(一)概念,(找不到公共部分则不等式组无解),华东师大版七年级下册,第8章 一元一次不等式,8.3 一元一次不等式组(第2课时),8.3一元一次不等式组的应用,1.什么叫一元一次不等式组?怎样解一元一次不等式组?,2.试一试:,答:_-6_,已知不等式组 的解集为1x1,则(a+1)(b-1)的值为多少?,若 x=2,则x=,若 x 2,则x,若4 x 8,则x,若4 x-3 2,则x,2,-2 x 2,-2 x 2,由题意得:-2
32、 4x-3 2,4x-3 2,4x-3-2,2、一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满,(1)设有x间宿舍,请写出x应满足的不等式组;(2)可能有多少间宿舍,多少名学生?,这里有X间宿舍,每间住4人,剩下19人,因此学生人数为(4X+19)人,若每间住6人,则有一间住不满,这是什么不等关系呢?你明白吗?,6,6,6,4X+19,0人到6人之间,最后一间宿舍,6,(X-1)间宿舍,列不等式组为:04x+19-6(x-1)6,可以看出:0最后一间宿舍住的人数6,最后一间宿舍住的人数=总人数-(x-1)间住的人数,解:设有x间宿舍,根据题意得不等式组:,04x
33、+19-6(x-1)6,即:4x+19-6(x-1)0 4x+19-6(x-1)6解得:18.5x12.5因为x是整数,所以x=10,11,12.因此可能有10间宿舍,59名学生或11间宿舍,63名学生或12间宿舍,67名学生.,实践应用,合作探索,例2:某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B两种产品共50件,已知生产一件A产品需要甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg,(1)设生产X件A种产品,写出X应满足的不等式组(2)有哪几种符合的生产方案?(3)若生产一件A产品可获利700元,生产一件B产品可获利1200元,那
34、么采用哪种生产方案可使生产A、B两种产品的总获利最大?最大利润是多少?,思路分析:(1)本题的不等关系是:生产A、B两种产品所需的甲种原料360生产A、B两种产品所需的乙种原料290,(2)列表看各量的关系,所以,列不等式组为:,解得:30X32,所以,可有三种生产方案:A种30件,B种20件;A种31件,B种19件;A种32件,B种18件。,因为x为正整数,所以,X的可能取值为30,31,32,1、有堆苹果分给一组小朋友,如果每人5个,还有18个多余,如果每人7个,则还有一位小朋友分不到7个,求苹果的个数和小朋友的人数。,解:设小朋友人数为x人,则苹果数为(5x+18)个,根据题意得:,解得:9x12.5,所以x=10、11、12,答:小朋友有10、11或12人,苹果有68、73或78人。,因为x为正整数,请同学们用学过的方法检验一下自己的能力,1、小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端;体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端。这时,爸爸的一端仍然着地。后来,小宝借来一副质量为6千克的哑铃加在他和妈妈坐的一端,结果,爸爸被跷起离地。猜猜小宝的体重约是多少?,这节课我们学习了构建不等式组的数学模型解决实际问题的数学方法,我们利用不等式组解决实际问题的关键是找出题中的不等关系。,小结,作业,