天然气工程课程设计报告.doc

上传人:仙人指路1688 文档编号:2743931 上传时间:2023-02-24 格式:DOC 页数:27 大小:458KB
返回 下载 相关 举报
天然气工程课程设计报告.doc_第1页
第1页 / 共27页
天然气工程课程设计报告.doc_第2页
第2页 / 共27页
天然气工程课程设计报告.doc_第3页
第3页 / 共27页
天然气工程课程设计报告.doc_第4页
第4页 / 共27页
天然气工程课程设计报告.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《天然气工程课程设计报告.doc》由会员分享,可在线阅读,更多相关《天然气工程课程设计报告.doc(27页珍藏版)》请在三一办公上搜索。

1、天然气工程课程设计报告姓 名: 王 岩 学 号: 2008* 班 级: 054*-* 专 业: 勘查技术与工程(油气井)学 院: 工程学院 指导老师: 宁伏龙老师 目录一、 程序运行图示二、 程序代码分析三、 该井节点分析四、 未来天然气工业的发展趋势和我国面临的一些瓶颈问题一、程序运行图示1.欢迎界面以及基本参数的输入2.酸性气体偏差系数计算(HY模型/DPK模型/DPR模型与WA校正法)3.天然气相平衡计算(露点模型/泡点模型/等温闪蒸模型)4天然气两相管流压力计算(MukherjeeBrill模型)5.天然气水合物生成预测及抑制剂用量计算二、程序代码分析1.气体偏差系数计算(HY模型,D

2、PK模型,DPR模型)1.1HY模型+WA校正法1.1.1HY偏差系数计算模型 该法以 Starling-Carnahan 状态方程为基础 ,通过对 Standing-Katz 图版进行拟合 ,得到以下关系式:Z = 0. 06125* ppr / (*Tpr ) *exp - 1. 2 *(1 - 1/ Tpr )2r 为拟对比密度 ,可用牛顿迭代法从如下方程求得:0 = (r +r2 +r3 r4)/(1 - r )3 -(14. 76 / Tpr -9. 76 / Tpr2+ 4. 58/Tpr3)*r2+(90. 7/Tpr-242. 2/Tpr2+ 42. 4/Tpr3)* r (2

3、. 18+2. 82/ Tpr)-0. 01652( ppr / Tpr )* exp - 1.2*(1 - 1/ Tpr )2 该法应用范围是:1. 2 Tpr 3 ;0. 1 ppr 24. 0。部分代码如下:Private Sub Command1_Click()Dim n(11) As Double -定义各组分Dim i As IntegerFor i = 0 To 11n(i) = Val(欢迎界面.摩尔分数(i) / 100Next iDim p As Double, T As Double-定义压力、温度p = Val(绝对工作压力)T = Val(绝对工作温度)Dim Tc(

4、11) As Double, Pc(11) As Double-定义临界温度、临界压力Tc(0) = 373.5833 Pc(11) = 295.5315Dim Tpc As Double, Ppc As Double-计算拟临界压力、拟临界温度Tpc = 0Ppc = 0For i = 0 To 11 Tpc = Tpc + n(i) * Tc(i) Ppc = Ppc + n(i) * Pc(i)Next iDim Tpr As Double, ppr As Double-计算拟对比压力、拟对比温度Tpr = T / Tpcppr = p / PpcDim r As Double-计算对比

5、密度(牛顿迭代法)Dim x As Double, x1 As Double, F As Double, F1 As Doubleabsolution = 1x = 0Do While absolution 0.00001F = (-0.06152) * (ppr / Tpr) * Exp(-1.2) * (1 - (1 / Tpr) 2) + (x + x 2 + x 3 - x 4) / (1 - x) 3) - (14.76 / Tpr) - (9.76 / (Tpr 2) + (4.58 / (Tpr 3) * (x 2) + (90.7 / Tpr) - (242.2 / (Tpr

6、2) + (42.4 / (Tpr 3) * (x (2.18 + (2.82 / Tpr)F1 = (1 + 4 * x + 4 * (x 2) - 4 * (x 3) + x 4) / (1 - x) 4) - (29.52 / Tpr) - (19.52 / (Tpr 2) + (9.16 / (Tpr 3) * x + (2.18 + (2.82 / Tpr) * (90.7 / Tpr) - (242.2 / (Tpr 2) + (42.4 / (Tpr 3) * (x (1.18 + (2.82 / Tpr)x1 = x - F / F1absolution = Abs(x1 -

7、x)x = x1Loopr = xDim z As Double-用HY模型计算偏差系数z = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / Tpr - 9.76 / (Tpr 2) + 4.58 / (Tpr 3) * r + (90.7 / Tpr - 242.2 / (Tpr 2) + 42.4 / (Tpr 3) * (r (1.18 + (2.82 / Tpr)HY模型Z = Format(z, 0.0000)-HY模型求得未校正的Z1.1.2WA校正法WA校正法引入参数,主要考虑了一些常见的极性分子( H2 S、 CO2 )的影响 ,希望用

8、此参数来弥补常用计算方法的缺陷。参数的关系式如下:= 15 (M - M2) + 4. 167 ( N0. 5- N2)式中:M 为气体混合物中 H2 S与 CO2 的摩尔分数之和; N 为气体混合物中 H2 S的摩尔分数。 根据 Wichert2Aziz 的观点 ,每个组分的临界温度和临界压力都应与参数有关 ,临界参数的校正关系式如下所示:T ci= Tci - p ci= pci * T ci/ Tci 式中: Tci为i 组分的临界温度 ,K; pci为i 组分的临界压力 ,kPa ; Tci为 i 组分的校正临界温度 , K; pci为 i组分的校正临界压力 ,kPa。部分代码如下:D

9、im nhc As Double, nh As Double, As Double, Tc1(11) As Double, Pc1(11) As Double-WA校正nhc = n(0) + n(2)nh = n(0) = 15 * (nhc - nhc 2) + 4.167 * (nh 0.5 - nh 2)For i = 0 To 11 Tc1(i) = Tc(i) - Pc1(i) = Pc(i) * Tc1(i) / Tc(i)Next iDim Tpc1 As Double, Ppc1 As Double, z1 As DoubleTpc1 = 0Ppc1 = 0For i = 0

10、 To 11 Tpc1 = Tpc1 + n(i) * Tc1(i) Ppc1 = Ppc1 + n(i) * Pc1(i)Next iDim Tpr1 As Double, Ppr1 As DoubleIf T = 17.24 Then Dim T1 As Double T1 = T + 1.94 * (p / 2760 - (2.1 * (10 (-8) * (p 2) Tpr1 = T1 / Tpc1 Ppr1 = p / Ppc1 z1 = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / Tpr1 - 9.76 / (Tpr1 2) + 4.58

11、 / (Tpr1 3) * r + (90.7 / Tpr1 - 242.2 / (Tpr1 2) + 42.4 / (Tpr1 3) * (r (1.18 + (2.82 / Tpr1) HY模型WAZ = Format(z1, 0.0000)Else Tpr1 = T / Tpc1 Ppr1 = p / Ppc1 z1 = (1 + r + r 2 - r 3) / (1 - r) 3) - (14.76 / Tpr1 - 9.76 / (Tpr1 2) + 4.58 / (Tpr1 3) * r + (90.7 / Tpr1 - 242.2 / (Tpr1 2) + 42.4 / (Tp

12、r1 3) * (r (1.18 + (2.82 / Tpr1) HY模型WAZ = Format(z1, 0.0000)-校正后的偏差系数ZEnd IfEnd Sub1.2DAK模型+WA校正法1.2.1DAK偏差系数计算模型该模型与 Dranchuk-Purvis-Robinsion 计算法相同 ,但相对密度应采用牛顿迭代法从下式求出:0=1 + (A1 + A2/Tpr+ A3/Tpr3+ A4/Tpr4+A5/Tpr5)* r +(A6+A7/Tpr+ A8/Tpr2)*r2- A9*(A7/Tpr+ A8/Tpr3) r5 +A10/Tpr3*r 2*(1 + A11*r2 )* e

13、xp ( - A11*r2 ) - 0. 27*ppr/(r *Tpr) 式中: Ai为给定系数。 该法应用范围是:1. 0 Tpr 3 ,0. 2 ppr 30 ;或者0. 7 Tpr 1. 0 , ppr 0.00001F = (-0.27) * ppr / Tpr + x + (A1 + A2 / Tpr + A3 / (Tpr 3) + A4 / (Tpr 4) + A5 / (Tpr 5) * (x 2) + (A6 + A7 / Tpr + A8 / (Tpr 2) * (x 3) - A9 * (A7 / Tpr + A8 / (Tpr 2) * (x 6) + A10 * (1

14、 + A11 * (x 2) * (x 3) / (Tpr 3) * Exp(-A11 * (x 2)f11 = 1 + 2 * (A1 + A2 / Tpr + A3 / (Tpr 3) + A4 / (Tpr 4) + A5 / (Tpr 5) * x + 3 * (A6 + A7 / Tpr + A8 / (Tpr 2) * (x 2) - 6 * A9 * (A7 / Tpr + A8 / (Tpr 2) * (x 5)f12 = (A10 / (Tpr 3) * (3 * (x 2) + A11 * (3 * (x 4) - 2 * A11 * (x 6) * Exp(-A11 *

15、(x 2)F1 = f11 + f12x1 = x - F / F1absolution = Abs(x1 - x)x = x1Loopr = xDim z As Double-用DAK模型计算偏差系数z = 1 + (A1 + A2 / Tpr + A3 / (Tpr 3) + A4 / (Tpr 4) + A5 / (Tpr 5) * r + (A6 + A7 / Tpr + A8 / (Tpr 2) * (r 2) - A9 * (A7 / Tpr + A8 / (Tpr 2) * (r 5) + A10 * (1 + A11 * (x 2) * (x 2) / (Tpr 3) * Ex

16、p(-A11) * (x 2)DAK模型Z = Format(z, 0.0000)-DPK模型求得未校正的Z1.2.2WA校正法同上,略。1.3DPR模型+WA校正法1.3.1DPR偏差系数计算模型Dranchuk、Purvis 和 Robinsion 根据 Benedict-Webb-Rubin 状态方程,将偏差系数转换为对比压力和对比温度的函数 ,于 1974 年推导出了带 8 个常数的经验公式 ,其形式为:Z = 1 +( A1 + A2/ Tpr+ A3/TPr3)* r+ (A4 + A5/Tpr)* r2+(A5 * A6/Tpr)* r 5 - A7/TPr3* r2*(1 +

17、A8* r2 )* exp ( - A8* r2)式中: Ai 为给定系数; ppr为拟对比压力 ,无因次; Tpr为拟对比温度 ,无因次。 DPR法使用 Newton-Raphson迭代法解非线性问题可得到偏差系数的值。这种方法的使用范围是:1. 05 Tpr 3 ;0. 2 ppr 30。部分代码如下:-计算对比密度Dim A1 As Double, A2 As Double, A3 As Double, A4 As Double, A5 As Double, A6 As Double, A7 As Double, A8 As DoubleA1 = 0.31506237A2 = -1.04

18、67099A3 = -0.57832729A4 = 0.53530771A5 = -0.61232032A6 = -0.10488813A7 = 0.68157001A8 = 0.68446549Dim x, x1 As Double, F As Double, F1 As Doubleabsolution = 1x = 0Do While absolution 0.00001F = -0.27 * ppr / Tpr + x + (A1 + A2 / Tpr + A3 / (Tpr 3) * (x 2) + (A4 + A5 / Tpr) * (x 3) + A5 * A6 / Tpr *

19、(x 6) + A7 / (Tpr 3) * (1 + A8 * (x 2) * (x 3) * Exp(-A8 * (x 2)F1 = 1 + 2 * (A1 + A2 / Tpr + A3 / (Tpr 3) * x + 3 * (A4 + A5 / Tpr) * (x 2) + 6 * A5 * A6 / Tpr * (x 5) + A7 / (Tpr 3) * (3 * (x 2) + A8 * (3 * (x 4) - 2 * A8 * (x 6) * Exp(-A8 * (x 2)x1 = x - F / F1absolution = Abs(x1 - x)x = x1Loopr

20、= xDim z As Double-用DPR模型计算偏差系数z = 1 + (A1 + A2 / Tpr + A3 / (Tpr 3) * x + (A4 + A5 / Tpr) * (x 2) + A5 * A6 / Tpr * (x 5) + A7 / (Tpr 3) * (1 + A8 * (x 2) * (x 2) * Exp(-A8) * (x 2)DPR模型Z = Format(z, 0.0000)-DPR型求得未校正的Z1.3.2WA校正法同上,略。2.天然气相平衡计算(露点,泡点,等温闪蒸模型)2.1等温闪蒸模型流体相平衡模型主要由三部分构成:描述平衡气液相组成、物质的来那个

21、(摩尔数)及平衡常数与温度、压力关系的物料平衡方程组;描述平衡气液相组成、物质的量、平衡常数与逸度关系的热力学平衡条件方程组及用于相平衡计算的状态方程组机构体系。三大方程组联立即可分析油气烃类体系相平衡模型。等温闪蒸模型即油气烃类体系的相态变化处于部分汽化和部分液化的状态。可利用Wilson平衡常数公式以及PR状态方程求解分析。部分代码如下:Private Sub Command3_Click()Dim n(11) As Double-获得各组分摩尔分数Dim i As IntegerFor i = 0 To 11 n(i) = Val(欢迎界面.摩尔分数(i) / 100Next iDim

22、Tc(11) As Double, Pc(11) As Double-获得临界参数Dim W(11) As Double-偏心因子W(0) = 0.1Dim kij(11, 11) As Double-获得二元交互作用参数kij(0, 0) = 0Dim T As Double, p As Double-获得一组T、P值T = Val(温度)p = Val(压力)Dim K(11) As Double, Tr(11) As Double, Pr(11) As Double-用Wilson公式求解各组分平衡常数For i = 0 To 11 Pr(i) = p / Pc(i) Tr(i) = T

23、 / Tc(i)Next iFor i = 0 To 11 K(i) = (Exp(5.37 * (1 + W(i) * (1 - 1 / Tr(i) / Pr(i)Next iresult = False-Do While result = False-迭代相平衡常数KDim F As Double, F1 As Double, V As Double, V1 As Double-用牛顿迭代求VDim newtonV As DoubleV = 0.7newtonV = 1Do While newtonV 0.001 For i = 0 To 11 F = F + n(i) * (K(i) -

24、 1) / (1 + (K(i) - 1) * V) F1 = F1 - n(i) * (K(i) - 1) 2) / (1 + (K(i) - 1) * V) 2) Next iV1 = V - F / F1newtonV = Abs(V1 - V) / V1)V = V1LoopDim xx(11) As Double, yy(11) As Double-分别求各组分的液相摩尔数x和气相摩尔数yFor i = 0 To 11 xx(i) = n(i) / (1 + (K(i) - 1) * V) yy(i) = n(i) * K(i) / (1 + (K(i) - 1) * V)Next

25、iDim x0 As Double, x(11) As Double-液相归一化处理x0 = 0For i = 0 To 11 x0 = x0 + xx(i)Next iFor i = 0 To 11 x(i) = xx(i) / x0Next iDim y0 As Double, y(11) As Double- 气相归一化处理y0 = 0For i = 0 To 11 y0 = y0 + yy(i)Next iFor i = 0 To 11 y(i) = yy(i) / y0Next iDim R As Double-计算PR状态方程系数ai,bi,am,bm,Am,BmR = 82.06

26、Dim A(11) As Double, B(11) As DoubleFor i = 0 To 11 A(i) = 0.45724 * (R 2) * (Tc(i) 2) / Pc(i) B(i) = 0.0778 * R * Tc(i) / Pc(i)Next iDim (11) As Double, M(11) As DoubleFor i = 0 To 11 M(i) = 0.37464 + 1.54226 * W(i) - 0.26992 * (W(i) 2) (i) = (1 + M(i) * (1 - Tr(i) 0.5) 2Next iDim aml As Double, bm

27、l As Double-液相混合物的平均引力系数am、平均斥力系数bmaml = 0bml = 0For i = 0 To 11 For j = 0 To 11 aml = aml + x(i) * x(j) * (A(i) * A(j) * (i) * (j) 0.5 * (1 - kij(i, j) Next jNext iFor i = 0 To 11 bml = bml + x(i) * B(i)Next iDim amg As Double, bmg As Double-气相混合物的平均引力系数am、平均斥力系数bm amg = 0bmg = 0For i = 0 To 11 For

28、 j = 0 To 11 amg = amg + y(i) * y(j) * (A(i) * A(j) * (i) * (j) 0.5 * (1 - kij(i, j) Next jNext iFor i = 0 To 11 bmg = bmg + y(i) * B(i)Next iDim Ag As Double, Bg As Double-气相ZV-计算气、液相的偏差系数ZV、ZLAg = amg * p / (R 2 * T 2)Bg = bmg * p / (R * T)Dim Zg0 As Double, Zg1 As DoubleZg0 = 0anther = 1Do While

29、anther 0.0001 g = Zg0 3 - (1 - Bg) * Zg0 2 + (Ag - 2 * Bg - 3 * Bg 2) * Zg0 - (Ag * Bg - Bg 2 - Bg 3) G1 = 3 * Zg0 2 - 2 * (1 - Bg) * Zg0 + (Ag - 2 * Bg - 3 * Bg 2) Zg1 = Zg0 - g / G1 anther = Abs(Zg1 - Zg0) / Zg1) Zg0 = Zg1LoopDim ZV As DoubleZV = Zg0Dim Al As Double, Bl As Double-液相ZL -计算气、液相的偏差系数

30、ZV、ZLAl = aml * p / (R 2 * T 2)Bl = bml * p / (R * T)Dim Zl0 As Double, Zl1 As DoubleZl0 = 0other = 1Do While other 0.0001 H = Zl0 3 - (1 - Bl) * Zl0 2 + (Al - 2 * Bl - 3 * Bl 2) * Zl0 - (Al * Bl - Bl 2 - Bl 3) H1 = 3 * Zl0 2 - 2 * (1 - Bl) * Zl0 + (Al - 2 * Bl - 3 * Bl 2) Zl1 = Zl0 - H / H1 other =

31、 Abs(Zl1 - Zl0) / Zl1) Zl0 = Zl1LoopDim Zl As DoubleZl = Zl0Dim (11) As Double-气相fig-气、液相中各组分逸度fig、filFor i = 0 To 11 (i) = 0 For j = 0 To 11 (i) = (i) + y(j) * (A(i) * A(j) * (i) * (j) 0.5) * (1 - kij(i, j) Next jNext iDim fg(11) As DoubleFor i = 0 To 11 fg(i) = y(i) * p * Exp(B(i) / bmg * (ZV - 1)

32、 - Log(ZV - Bg) - Ag / (2 * 2 0.5 * Bg) * (2 * (i) / amg - B(i) / bmg) * Log(ZV + 2.414 * Bg) / (ZV - 0.414 * Bg) / (2 * Bg * 2 0.5)Next iDim (11) As Double-液相fil -气、液相中各组分逸度fig、filFor i = 0 To 11 (i) = 0 For j = 0 To 11 (i) = (i) + x(j) * (A(i) * A(j) * (i) * (j) 0.5) * (1 - kij(i, j) Next jNext iD

33、im fl(11) As DoubleFor i = 0 To 11 fl(i) = x(i) * p * Exp(B(i) / bml * (Zl - 1) - Log(Zl - Bl) - Al / (2 * 2 0.5 * Bl) * (2 * (i) / aml - B(i) / bml) * Log(Zl + 2.414 * Bl) / (Zl - 0.414 * Bl) / (2 * Bl * 2 0.5)Next iDim K1(11) As Double-牛顿迭代调整平衡常数For i = 0 To 11 K1(i) = K(i) * fl(i) / fg(i)Next i F

34、or i = 0 To 11 K(i) = K1(i)Next i-判断逸度系数是否满足条件result = (Abs(fl(0) - fg(0) = 0.001) And (Abs(fl(1) - fg(1) = 0.0001) And (Abs(fl(2) - fg(2) = 0.01) And (Abs(fl(3) - fg(3) = 0.001) And (Abs(fl(4) - fg(4) = 0.001) And (Abs(fl(5) - fg(5) = 0.001) And (Abs(fl(6) - fg(6) = 0.001) And (Abs(fl(7) - fg(7) =

35、0.001) And (Abs(fl(8) - fg(8) = 0.001) And (Abs(fl(9) - fg(9) = 0.001) And (Abs(fl(10) - fg(10) = 0.001) And (Abs(fl(11) - fg(11) = 0.001) Loop-输出For i = 0 To 11 等温闪蒸液相i组分摩尔分数(i) = Format(x(i), 0.00000) 等温闪蒸气相i组分摩尔分数(i) = Format(y(i), 0.00000)Next i等温闪蒸气相总摩尔数 = Format(V, 0.00000)Dim L As Double-液相总摩尔数LL = 1 V等温闪蒸液相总摩尔数 = Format(L, 0.00000)等温闪蒸气相偏差系数 = Format(ZV, 0.00000)等温闪蒸液相偏差系数 = Format(Zl, 0.00000)End Sub2.2露点模型露点模型与等温闪蒸模型原理一样,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号