《河北衡水金卷2019届高三12月第三次联合质量测评(数学理).doc》由会员分享,可在线阅读,更多相关《河北衡水金卷2019届高三12月第三次联合质量测评(数学理).doc(11页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上河北衡水金卷20182019年度高三第三次联合质量测评数学(理科)本试卷共6页 满分150分 考试用时120分钟注意事项:l答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号第卷用0.5毫米黑色签字笔在答题卡上书写作答在试题卷上作答,答案无效3考试结束,考生必须将试题卷和答题卡一并交回第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项
2、中,只有一项是符合题目要求的。1已知复数z满足,则复数z在复平面内对应的点所在象限为A第一象限B第二象限C第三象限D第四象限2已知全集,集合为ABCD3若命题p为:为ABCD4朱世杰是历史上最伟大的数学家之一,他所著的四元玉鉴卷中“如像招数”五问中有如下问题:“今有官司差夫一千九百八十四人筑堤,只云初日差六十四人,次日转多八人,每人日支米三升”其大意为“官府陆续派遣1984人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多8人,修筑堤坝的每人每天分发大米3升”,在该问题中的1984人全部派遣到位需要的天数为A14B16C18D205如图所示,分别以正方形ABCD两邻边AB、
3、AD为直径向正方形内做两个半圆,交于点O若向正方形内投掷一颗质地均匀的小球(小球落到每点的可能性均相同),则该球落在阴影部分的概率为AB. CD6已知定义在R上的函数满足:(1) ;(2) 为奇函数;(3)当时,图象连续且恒成立,则的大小关系正确的为ABCD7一正方体被两平面截去部分后剩下几何体的三视图如图所示,则该几何体的表面积为ABCD8如图所示,边长为2的正方形ABCD中,E为BC边中点,点P在对角线BD上运动,过点P作AE的垂线,垂足为F,当最小时,ABCD9已知双曲线的左、右焦点分别为,左、右顶点分别为A、B,过点的直线与双曲线C的右支交于P点,且的外接圆面积为ABCD10利用一半径
4、为4cm的圆形纸片(圆心为O)制作一个正四棱锥方法如下:(1)以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合问:要使所制作的正四棱锥体积最大,则小圆的半径为ABCD11已知椭圆两个焦点之间的距离为2,单位圆O与的正半轴分别交于M,N点,过点N作圆O的切线交椭圆于P,Q两点,且,设椭圆的离心率为e,则的值为ABCD12已知函数,两个等式:对任意的实数均恒成立,且上单调,则的最大值为A1B2
5、C3D4第卷本卷包括必考题和选考题两部分。第1321题为必考题,每个试题考生都必须作答。第2223题为选考题。考生根据要求作答。 山东中学联盟二、填空题:本大题共4小题,每小题5分。13若实数满足约束条件的最小值为_14二项式的展开式中,设“所有二项式系数和”为A,“所有项的系数和”为B,“常数项”值为C,若,则含的项为_15已知圆为圆外任意一点过点P作圆C的一条切线,切点为N,设点P满足时的轨迹为E,若点A在圆C上运动,B在轨迹E上运动,则的最小值为_16定义在R上的函数满足,又当时,成立,若,则实数t的取值范围为_三、解答题:解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每
6、个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 山东中学联盟(一)必考题:共60分。17(12分)在ABC中,角A,B,C的对边分别为.(1)求c的值;(2)以AB为一边向外(与点C不在AB同侧)作一新的ABP,使得,求面积的最大值18(12分)随着经济的发展,个人收入的提高自2018年10月1日起,个人所得税起征点和税率的调整调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额依照个人所得税税率表,调整前后的计算方法如下表:(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,y表示应纳的税,试写出调整前后y关于的
7、函数表达式;(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:先从收入在3000,5000)及5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用a表示抽到作为宣讲员的收入在3000,5000)元的人数,b表示抽到作为宣讲员的收入在5000,7000)元的人数,随机变量,求Z的分布列与数学期望;小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?19(12分)如图所示,底面为菱形的直四棱柱被过三点的平面截去一个三棱锥(图一)得几何体(图二),E为的中点
8、(1)点F为棱上的动点,试问平面与平面是否垂直?请说明理由;(2)设,当点F为中点时,求锐二面角的余弦值20(12分)设抛物线的焦点为F,已知直线与抛物线C交于A,B两点(A,B两点分别在轴的上、下方)(1)求证:;(2)已知弦长,试求:过A,B两点,且与直线相切的圆D的方程21(12分)已知函数(1)若,证明:当;(2)设,若函数上有2个不同的零点,求实数的取值范围(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系中,直线l的参数方程为(t为参数,),以坐标原点为极点,轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.(1)当时,写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点,设直线l与曲线C交于A,B两点,试确定的取值范围 专心-专注-专业