北师大数学七年级下册练习题.doc

上传人:小飞机 文档编号:2769954 上传时间:2023-02-24 格式:DOC 页数:26 大小:310KB
返回 下载 相关 举报
北师大数学七年级下册练习题.doc_第1页
第1页 / 共26页
北师大数学七年级下册练习题.doc_第2页
第2页 / 共26页
北师大数学七年级下册练习题.doc_第3页
第3页 / 共26页
北师大数学七年级下册练习题.doc_第4页
第4页 / 共26页
北师大数学七年级下册练习题.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《北师大数学七年级下册练习题.doc》由会员分享,可在线阅读,更多相关《北师大数学七年级下册练习题.doc(26页珍藏版)》请在三一办公上搜索。

1、精选优质文档-倾情为你奉上七年级下练习题题班级 姓名 一、选择题(每小题3分,共30分)1下列计算正确是()Aa2n+an=a3nBa2nan=a3nC(a4)2=x6D(xy)5xy3=(xy)22已知则( ) A. 19 B. C . 25 D.3纳米是一种长度单位,1纳米=109米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A3.5104米 B3.5104米 C3.5105米 D3.5109米4(x1)(2x+3)的计算结果是()A2x2+x3B2x2x3C2x2x+3Dx22x35如图,点E在CD延长线上,下列条件中不能判定ABCD的是()A1=

2、2B3=4C5=BDB+BDC=1806下列乘法中,不能运用平方差公式进行运算的是()A(x+a)(xa)B(b+m)(mb)C(xb)(xb)D(a+b)(ab)7等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A7cm B7cm或5cm C5cm D3cm8若(xa)(x5)的展开式中不含有x的一次项,则a的值为() A0B5C5D5或59下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平

3、行A2个 B3个 C4个 D5个10如图,ABC中,A=,延长BC到D,ABC与ACD的平分线相交于点A1,A1BC与A1CD的平分线相交于点A2,依此类推,An1BC与An1CD的平分线相交于点An,则An的度数为()ABCD题号12345678910答案二、填空题(每小题4分,共20分)11计算:(2xy3z2)2=12如图,直线AB、CD、EF相交于一点,1=50,2=64,则COF=度 13将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则1+2=14如果多项式x2+8x+k2是一个完全平方式,则k的值是15 ;5x3x4 三、计算与求值

4、(共50分)16计算与求值(每小题5分,共20分)(1)()2(2016)0+()11()12; (2)(3x2)2+(3+x)(x3);(3)(9x4y36x2y+3xy2)(3xy);(4)先化简,再求值(2x+y)2y(y+4x)8xy(2x)其中x=2,y=1四、解答题(共30分)17、用简便方法计算(每小题5分,共10分)(1)9992 (2)20162018-2017218(6分)已知:ab=4,ab=1,求:(a+b)2和a26ab+b2的值19(本题满分7分)已知:如图所示,ABC=ADC,BF和DE分别平分ABC和ADC,AED=EDC求证:EDBF证明:BF和DE分别平分A

5、BC和ADC(已知)EDC=_ADC,FBA=_ABC( )又ADC=ABC(已知),_=FBA(等量代换)又AED=EDC(已知),_=_(等量代换),EDBF_20 (本题满分7分)如图,已知ABCE,B40,CN是BCE的平分线,CMCN, 求BCM的度数 B卷(50分)五、填空题(4分,共20分)21已知:3m=2,9n=5,33m2n+1=22若(x2)(x2+ax+b)的积中不含x的二次项和一次项,则a=b=23若a23a+1=0,则=24已知等腰ABC中一腰上的高与另一腰的夹角为30,则ABC的底角度数为度25已知ABC的面积为1,把它的各边延长一倍得A1B1C1;再A1B1C1

6、的各边延长两倍得A2B2C2;在A2B2C2的各边延长三倍得A3B3C3,A3B3C3的面积为六、解答题(每小题10分,共30分)26(1)已知ABC三边长是a、b、c,化简代数式:|a+bc|ca+b|bca|+|bac|;(2)已知x2+3x1=0,求:x3+5x2+5x+2015的值27先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值解:y2+4y+8=y2+4y+4+4=(y+2)2+4(y+2)20(y+2)2+44y2+4y+8的最小值是4(1)求代数式m2+m+4的最小值;(2)求代数式4x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长1

7、5m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?28如图(1),在RtABC中,ACB=90,CDAB,垂足为DAF平分CAB,交CD于点E,交CB于点F(1)求证:CE=CF;(2)若AD=AB,CF=CB,ABC、CEF、ADE的面积分别为SABC、SCEF、SADE,且SABC=24,则SCEFSADE=;(3)将图(1)中的ADE沿AB向右平移到ADE的位置,使点E落在BC边上,其它条件不变,如图(2)所示,试猜想:BE与CF有怎样的数量关系?并证明你的结论2015-2016

8、学年四川省成都七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1下列计算正确是()Aa2n+an=a3nBa2nan=a3nC(a4)2=x6D(xy)5xy3=(xy)2【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方与积的乘方的运算方法逐一判断即可【解答】解:a2n+ana3n,选项A不正确;a2nan=a3n,选项B正确;(a4)2=a8,选项C不正确;(xy)5xy3=x4y2,选项D不正确故选:B2下列各组长度的三条线段能组成三角形的是()A1cm,2cm,3cmB1c

9、m,1cm,2cmC1cm,2cm,2cmD1cm,3cm,5cm【考点】三角形三边关系【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【解答】解:根据三角形任意两边的和大于第三边,A、1+2=3,不能组成三角形,故错误,B、1+1=2,不能组成三角形,故错误,C、1+2=32,22=01,能够组成三角形,故正确,D、1+3=45,53=21,不能组成三角形,故错误,故选C3纳米是一种长度单位,1纳米=109米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A3.5104米B3.5104米C3.5105米D3.5109米【考点】

10、科学记数法表示较小的数【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:35000纳米=35000109米=3.5105米故选:C4(x1)(2x+3)的计算结果是()A2x2+x3B2x2x3C2x2x+3Dx22x3【考点】多项式乘多项式【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可【解答】解:(x1)(2x+3),=2x22x+3x3,=2x2+x3故选:A5如图,点E在CD延长线上,下列条件中不能判

11、定ABCD的是()A1=2B3=4C5=BDB+BDC=180【考点】平行线的判定【分析】根据平行线的判定方法直接判定【解答】解:选项B中,3=4,ABCD (内错角相等,两直线平行),所以正确;选项C中,5=B,ABCD (内错角相等,两直线平行),所以正确;选项D中,B+BDC=180,ABCD(同旁内角互补,两直线平行),所以正确;而选项A中,1与2是直线AC、BD被AD所截形成的内错角,因为1=2,所以应是ACBD,故A错误故选A6下列乘法中,不能运用平方差公式进行运算的是()A(x+a)(xa)B(b+m)(mb)C(xb)(xb)D(a+b)(ab)【考点】平方差公式【分析】根据平

12、方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答【解答】解:A、B、C、符合平方差公式的特点,故能运用平方差公式进行运算;D,两项都互为相反数,故不能运用平方差公式进行运算故选D7等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A7cmB7cm或5cmC5cmD3cm【考点】等腰三角形的性质;三角形三边关系【分析】分3cm长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长

13、是1333=7cm,而3+37,不满足三角形的三边关系故底边长是3cm故选D8如图,下列条件不能证明ABCDCB的是()AAB=DC,AC=DBBA=D,ABC=DCBCBO=CO,A=DDAB=DB,AC=DC【考点】全等三角形的判定【分析】利用全等三角形的判定方法:SSS、SAS、ASA、AAS、HL分别进行分析即可【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定ABCDCB,故此选项不合题意;B、A=D,ABC=DCB再加公共边BC=BC可利用AAS判定ABCDCB,故此选项不合题意;C、BO=CO,A=D再加对顶角AOB=DOC可利用AAS判定AOBDOC,可

14、得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定ABCDCB,故此选项不合题意;D、AB=DB,AC=DC不能判定ABCDCB,故此选项不合题意;故选:D9下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行A2个B3个C4个D5个【考点】平行线的性质;余角和补角;对顶角、邻补角【分析】(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直

15、线的距离的定义解答;(5)根据平行公理解答【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选A10如图,ABC中,A=,延长BC到D,ABC与ACD的平分线相交于点A1,A1BC与A1CD的平分线相交于点A2,依此类推,An1BC与An1CD的平分线相交于点An,则An的度数为()ABCD【考点】三角形内角和定理;三角形的外角性质【分析】由A1CD=A1+

16、A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有A=2A1,同理可得A1=2A2,即A=22A2,因此找出规律【解答】解:A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+A,A=2A1=,A1=,同理可得A1=2A2,即A=22A2=,A2=,A=2nAn,An=()n=()故选C二、填空题(每小题3分,共15分)11计算:(2xy3z2)2=4x2y6z4【考点】幂的乘方与积的乘方【分析】根据积的乘方,即可解答【解答】解:(2xy3z2)2=4x2

17、y6z4,故答案为:4x2y6z412如图,直线AB、CD、EF相交于一点,1=50,2=64,则COF=74度【考点】对顶角、邻补角【分析】根据平角意义求得EOD,再根据对顶角求得结论【解答】解:1=50,2=64,EOD=18012=74COF=EOD=74,故答案为:7413将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则1+2=90【考点】平行线的性质【分析】过点B作BNFG,根据矩形的性质可得BNEHFG,再根据两直线平行,内错角相等可得1=3,2=4,然后求出1+2=ABC,从而得证【解答】证明:如图,过点B作BNFG,四边形EFG

18、H是矩形纸片,EHFG,BNEHFG,1=3,2=4,1+2=3+4=ABC=90,即1+2=90故答案为:9014如果多项式x2+8x+k是一个完全平方式,则k的值是16【考点】完全平方式【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可【解答】解:8x=24x,k=42=1615如图,ABC中,BF、CF分别平分ABC和ACB,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF和CEF都是等腰三角形;DFB=EFC;ADE的周长等于AB与AC的和;BF=CF其中正确的是(填序号,错选、漏选不得分)【考点】等腰三角形的判定;平行线的性质【分析】由平行

19、线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质【解答】解:DEBC,DFB=FBC,EFC=FCB,BF是ABC的平分线,CF是ACB的平分线,FBC=DFB,FCE=FCB,DBF=DFB,EFC=ECF,DFB,FEC都是等腰三角形正确;ABC不是等腰三角形,DFB=EFC,是错误的;DFB,FEC都是等腰三角形DF=DB,FE=EC,即有DE=DF+FE=DB+EC,ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC正确,共2个正确的;ABC不是等腰三角形,ABCACB,FBCFCB,BF=CF是错误的;故答案为:三、计算与求值(每小题24分,共

20、24分)16计算与求值(1)()2(2016)0+()11()12;(2)(3x2)2+(3+x)(x3);(3)(9x4y36x2y+3xy2)(3xy);(4)先化简,再求值(2x+y)2y(y+4x)8xy(2x)其中x=2,y=1【考点】整式的混合运算化简求值;零指数幂;负整数指数幂【分析】(1)=(4)2=16,对于()11()12;先将()12化为,再拆项变成,利用积的乘方的逆运算进行计算;(2)利用完全平方差公式和平方差公式计算,注意(3+x)(x3)=(3+x)(3x)=9x2;(3)多项式除以单项式,把多项式的每一项都与单项式相除,最后相加即可;(4)先化简,按运算顺序,再代

21、入求值【解答】解:(1)()2(2016)0+()11()12,=161+()11,=15+,=16.5;(2)(3x2)2+(3+x)(x3),=9x212x+4+9x2,=8x212x+13;(3)(9x4y36x2y+3xy2)(3xy),=9x4y3(3xy)6x2y(3xy)+3xy2(3xy),=3x3y2+2xy;(4)先化简,再求值(2x+y)2y(y+4x)8xy(2x)其中x=2,y=1原式=4x2+4xy+y2y24xy8xy(2x),=(4x28xy)(2x),=2x+4y当x=2,y=1时,原式=22+4(1)=44=8四、解答题(共31分)17解关于x的方程:(x+

22、2)2(x2)(x+2)=6【考点】平方差公式;完全平方公式;解一元一次方程【分析】先转化为一般式方程,然后解关于x的一元一次方程【解答】解:(x+2)2(x2)(x+2)=6,x2+4x+4x2+4=6,4x=68,x=18已知:ab=4,ab=1,求:(a+b)2和a26ab+b2的值【考点】完全平方公式【分析】依据完全平方公式对代数式进行变形,然后整体代入进行求解即可【解答】解:(a+b)2=(ab)2+4ab=42+4(1)=164=12a26ab+b2=(ab)24ab=16+4=2019如图,已知点A、F、E、C在同一直线上,ABCD,ABE=CDF,AF=CE(1)从图中任找两对

23、全等三角形,并用“”符号连接起来;(2)求证:AB=CD【考点】全等三角形的判定与性质【分析】(1)本题有三对三角形全等,分别是ABECDF,ABCCDA,BECDFA(2)先根据AF=CE利用等式的性质得:AE=FC,由ABCD得内错角相等,则ABECDF,得出结论【解答】解:(1)ABECDF,ABCCDA,(2)AF=CE,AF+EF=CE+EF,即AE=CF,ABCD,BAC=DCA,ABE=CDF,ABECDF(AAS),AB=CD20平面内的两条直线有相交和平行两种位置关系(1)如图1,若ABCD,点P在AB、CD外部,则有B=BOD,又因BOD是POD的外角,故BOD=BPD+D

24、得BPD=BD将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则BPD、B、D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则BPD、B、D、BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中A+B+C+D+E的度数【考点】平行线的性质;三角形内角和定理;三角形的外角性质【分析】(1)延长BP交CD于点E,根据ABCD得出B=BED,再由三角形外角的性质即可得出结论;(2)连接QP并延长,由三角形外角的性质得出BPE=B+BQE,DPE=D+DQP,由此可得出结论;(3)由

25、(2)的结论得:AFG=B+EAGF=C+D再根据A+AFG+AGF=180即可得出结论【解答】解:(1)不成立,结论是BPD=B+D延长BP交CD于点E,ABCD,B=BED,又BPD=BED+D,BPD=B+D;(2)结论:BPD=BQD+B+D连接QP并延长,BPE是BPQ的外角,DPE是PDQ的外角,BPE=B+BQE,DPE=D+DQP,BPE+DPE=B+D+BQE+DQP,即BPD=BQD+B+D;(3)由(2)的结论得:AFG=B+EAGF=C+D又A+AFG+AGF=180A+B+C+D+E=180(或由(2)的结论得:AGB=A+B+E且AGB=CGD,A+B+C+D+E=

26、180五、填空题(4分,共20分)21已知:3m=2,9n=5,33m2n+1=【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方【分析】逆运用同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加以及幂的乘方,底数不变指数相乘进行计算即可得解【解答】解:33m2n+1=33m32n31,=(3m)3(32)n3,=239n3,=893,=故答案为:22若(x2)(x2+ax+b)的积中不含x的二次项和一次项,则a=2b=4【考点】多项式乘多项式【分析】本题需先根据已知条件求出(x2)与(x2+ax+b)的积,再根据积中不出现一次项和二次项这个条件,即可求出a、b的值【解答】解

27、:(x2)(x2+ax+b)=x3+ax2+bx2x22ax2b积中不含x的二次项和一次项,a2=0,b2a=0,解得a=2,b=4故答案为:2,423若a23a+1=0,则=7【考点】完全平方公式【分析】将配方为完全平方式,再通分,然后将a23a+1=0变形为a2+1=3a,再代入完全平方式求值【解答】解:=(a2+22)=(a+)22=()22;又a23a+1=0,于是a2+1=3a,将代入得,原式=()22=92=7故答案为724已知等腰ABC中一腰上的高与另一腰的夹角为30,则ABC的底角度数为30或60度【考点】等腰三角形的性质【分析】等腰三角形一腰上的高与另一腰的夹角为30,但没有

28、明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论【解答】解:当等腰三角形为锐角三角形时,如图1,由已知可知,ABD=30,又BDAC,ADB=90,A=60,ABC=C=60当等腰三角形为钝角三角形时,如图2,由已知可知,ABD=30,又BDAC,DAB=60,C=ABC=30故答案为:30或6025已知ABC的面积为1,把它的各边延长一倍得A1B1C1;再A1B1C1的各边延长两倍得A2B2C2;在A2B2C2的各边延长三倍得A3B3C3,A3B3C3的面积为4921【考点】三角形的面积【分析】先根据根据等底的三角形高的比等于面积比求出A1B1C1及A2B2C2的面积

29、,再根据两三角形的倍数关系求解即可【解答】解:ABC与A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,ABC面积为1,SA1B1B=2同理可得,SC1B1C=2,SAA1C=2,SA1B1C1=SC1B1C+SAA1C+SA1B1B+SABC=2+2+2+1=7;如图,连接A2C1,根据A2B1=2A1B1,得到:A1B1:A2A1=1:3,因而若过点B1,A2作A1B1C1与A1A2C1的A1C1边上的高,则高线的比是1:3,因而面积的比是1:3,则A2B1C1的面积是A1B1C1的面积的2倍,则A2B1C1的面积是14,同理可以得到A2B2C1的面积是A2

30、B1C1面积的2倍,是28,则A2B2B1的面积是42,同理B2C2C1和A2C2A1的面积都是42,A2B2C2的面积是719=133,同理A3B3C3的面积是71937=4921,故答案为:4921六、解答题(每小题10分,共30分)26(1)已知ABC三边长是a、b、c,化简代数式:|a+bc|ca+b|bca|+|bac|;(2)已知x2+3x1=0,求:x3+5x2+5x+2015的值【考点】因式分解的应用;整式的加减;三角形三边关系【分析】(1)根据三角形的三边关系即三角形的两边之和大于第三边,两边之差小于第三边,去掉绝对值,再根据整式加减的法则即可得出答案(2)先据x2+3x1=

31、0,得出x2+3x=1,再将x3+5x2+5x+2015化简为含有x2+3x的代数式,然后整体代入即可求出所求的结果【解答】解:(1)a、b、c是ABC三边的长,|a+bc|ca+b|bca|+|bac|=a+bc(ca+b)(b+c+a)+(b+a+c)=a+bcc+ab+bcab+a+c=2a2c;(2)x2+3x1=0,x2+3x=1,x3+5x2+5x+2015,=x(x2+3x)+2x2+5x+2015=2x2+6x+2015=2(x2+3x)+2015=2+2015=201727先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值解:y2+4y+8=y2

32、+4y+4+4=(y+2)2+4(y+2)20(y+2)2+44y2+4y+8的最小值是4(1)求代数式m2+m+4的最小值;(2)求代数式4x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,

33、即可求出最大值以及x的值即可【解答】解:(1)m2+m+4=(m+)2+,(m+)20,(m+)2+,则m2+m+4的最小值是;(2)4x2+2x=(x1)2+5,(x1)20,(x1)2+55,则4x2+2x的最大值为5;(3)由题意,得花园的面积是x(202x)=2x2+20x,2x2+20x=2(x5)2+502(x5)20,2(x5)2+5050,2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m228如图(1),在RtABC中,ACB=90,CDAB,垂足为DAF平分CAB,交CD于点E,交CB于点F(1)求证:CE=CF;(2)若AD=AB,

34、CF=CB,ABC、CEF、ADE的面积分别为SABC、SCEF、SADE,且SABC=24,则SCEFSADE=2;(3)将图(1)中的ADE沿AB向右平移到ADE的位置,使点E落在BC边上,其它条件不变,如图(2)所示,试猜想:BE与CF有怎样的数量关系?并证明你的结论【考点】全等三角形的判定与性质;三角形的面积;角平分线的性质;等腰三角形的判定与性质【分析】(1)求出CAF=BAF,B=ACD,根据三角形外角性质得出CEF=CFE,即可得出答案;(2)求出CAF和ACD的面积,再相减即可求出答案;(3)过F作FHAB于H,求出CF=FH=CE,证CEEFHB,推出CE=BF,都减去FE即

35、可【解答】(1)证明:如图(1),在RtABC中,ACB=90,CDAB,CDB=ACB=90,ACD+BCD=90,BCD+B=90,ACD=B,AF平分CAB,CAE=BAF,ACD+CAE=B+BAF,CEF=CFE,CE=CF(2)解:SACB=24,AD=AB,CF=CB,SACD=SADE+SACE=24=6,SACF=SCEF+SACE=24=8,得:SCEFSADE=86=2,故答案为:2(3)BE=CF,证明:如图(2),过F作FHAB于H,CDAB,CDFH,ECE=HFB,ADE沿AB平移到ADE,DE=DE,EE=DD,四边形EDDE是平行四边形,EEAB,CDB=90,CEE=CDB=90=FHB,AF平分CAB,ACF=90,FHAB,CF=FH,CF=CE,CE=FH,在CEE和FHB中CEEFHB(ASA),CE=BF,CEFE=BFEF,即BE=CF2017年2月17日专心-专注-专业

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号