《高考试题解析数学(理)分项版之专题13统计.doc》由会员分享,可在线阅读,更多相关《高考试题解析数学(理)分项版之专题13统计.doc(10页珍藏版)》请在三一办公上搜索。
1、2011年高考试题解析数学(理科)分项版13 统计一、选择题:1. (2011年高考山东卷理科7) 某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263954 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为来源:Zxxk.Com(A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元3. (2011年高考湖南卷理科4)通过随即询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.附表:0.0500.0100.0013.841
2、6.63510.828参照附表,得到的正确结论是 A.在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B. 在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C. 由99%以上的把握认为“爱好该项运动与性别有关”D. 由99%以上的把握认为“爱好该项运动与性别无关”5(2011年高考陕西卷理科9)设, 是变量x和y的n个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是(A)x和y相关系数为直线l的斜率(B)x和y的相关系数在0到1之间(C)当n为偶数时,分布在l两侧的样本点的个数一定相同(D)直线过点【答案】D【解析】:由
3、得又,所以则直线过点,故选D6. (2011年高考四川卷理科1)有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5) 2 15.5,19.5) 4 19.5,235) 9 23.5,27.5) 18 27.5,31.5) 1l 31.5,35.5) 12 35.539.5) 7 39.5,43.5) 3 根据样本的频率分布估计,数据落在31.5,43.5)的概率约是( ) (A) (B) (C) (D)答案:B解析:大于或等于31.5的数据所占的频数为12+7+3=22,该数据所占的频率约为.二、填空题:3. (2011年高考广东卷理科13)某数学老师身高176cm,他爷爷
4、、父亲和儿子的身高分别是173cm、170cm、和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm.【解析】185cm.4.(2011年高考安徽卷江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差【答案】7【解析】因为信件数的平均数为,所以方差为=7.三、解答题:1. (2011年高考辽宁卷理科19)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(I
5、)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,xa的样本方差,其中为样本平均数.解析:(I)X可能的取值为0,1,2,3,4,且 即X的分布列为X01234PX的数学期望是:.2. (2011年高考全国新课标卷理科19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大
6、于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果: A配方的频数分布表指标值分组频数82042228 B配方的频数分布表指标值分组频数41242328()分别估计用A配方,B配方生产的产品的优质品率;()已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)3. (2011年高考广东卷理科17)(本小题满分13分)
7、为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足175且y75,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).【解析】解:(1),即乙厂生产的产品数量为35件。 (2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品故乙厂生产有大约(件)优等品, (3)
8、的取值为0,1,2。所以的分布列为来源:学科网ZXXK012P故4(2011年高考北京卷理科17)本小题共13分以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。()如果X=8,求乙组同学植树棵树的平均数和方差;()如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(注:方差,其中为, 的平均数)解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为()当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分
9、别从甲、乙两组中随机选取一名同学,共有44=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=同理可得所以随机变量Y的分布列为:Y1718192021PEY=17P(Y=17)+18P(Y=18)+19P(Y=19)+20P(Y=20)+21P(Y=21)=17+18+19+20+21=19.5(2011年高考福建卷理科19)(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X为标准B,已知甲厂执
10、行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(I)已知甲厂产品的等级系数X1的概率分布列如下所示:5678P04ab01且X1的数字期望EX1=6,求a,b的值;(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望 (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性解析:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。解:(I)因为又由X1的概率分布列得来源:学科网ZXXK由(II)由已知得,样本的频率分布表如下:345678030202010101用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:345678P030202010101所以