《轴类零件的加工工艺分析与编程设计机械制造毕业论文.doc》由会员分享,可在线阅读,更多相关《轴类零件的加工工艺分析与编程设计机械制造毕业论文.doc(17页珍藏版)》请在三一办公上搜索。
1、轴类零件的加工工艺分析与编程设计摘 要本设计针对轴类零件的加工工艺及程序的编制,通过大量的轴类零件图纸绘制分析,工厂实际加工过程调查,和老师同学悉心分析讨论,众多相关资料的整合,并在在认真总结了前人成果的基础上,对轴类零件(套筒类)展开了仔细的分析。首先,对轴类零件的特征,类型等作了简要的介绍。在此基础上,对其加工工艺进行了阐述,接着就对其进行分析。从分析简单的零件图到装假方案的确定,再到刀具的选择以及切削用量、背吃刀量、进给速率、编程设计等一系列问题的探讨,较全面地把轴类零件的加工工艺及编程方案进行了论证。 关键词走刀路线;夹具;加工用量;进给速率;工艺目 录第一章 概论11.1 本文的研究
2、背景及意义.11.2 轴类零件的功用11.3 轴类零件的结构特点11.4 轴类零件的主要技术要求.11.5 轴类零件的材料毛坯及热处理.2第二章 轴类零件的加工工艺3第三章 轴类零件的加工工艺分析43.1 空心轴加工工艺分析43.2 轴类零件加工中的工艺问题53.3 确定装夹方案63.4 确定加工路线及进给路线63.5 刀具的选择73.6 选择切削用量83.7 主轴转速的确定83.8 进给速度的确定83.9 背吃刀量确定9第四章 轴类零件的编程104.1编程技巧104.2编程特点124.3编程方法124.4编程步骤12设计总结13参考文献14致 谢15前 言本篇毕业设计课题为:轴类零件的加工工
3、艺分析与编程设计。借助AutoCAD软件,先设计绘制图形,然后编制设计和制造工艺,通过数控车床进行加工,从而实现零件的设计、制造一体化的图纸设计和图纸制造,具有相当大的实用价值和发展空间。由于设计的需要,我仔细研究了零件图,但在设计过程中,因自己经验不足,遇到了很多实际问题,使我体会到了在现场实习调研仅证明可不可以实干,而不能代表能不能干好。通过毕业设计,我真正认识到理论和实践相结合的重要性,并培养了我综合运用所学理论知识和实际操作知识去理性的分析问题和解决实际工作中的一般技术工程问题的能力,使我建立了正确的设计思想,掌握了工艺设计的一般程序、规范和方法,并进一步巩固、深化地吸收和运用了所学的
4、基本理论知识和基本操作技能。还有,它提高了我设计计算、绘图、编写技术文件、编写数控程序、数控机床操作、实际加工零件和正确使用技术资料、标准、手册等工具书的独立工作能力,更培养了我勇于创新的精神及严谨的学风及工作作风。由于本人能力有限,缺少设计经验,设计中漏误在所难免,敬请各位老师批评指正。第一章 概 论轴,支承转动零件并与之一起回转以传递运动、扭矩或弯矩的机械零件。一般为金属圆杆状,各段可以有不同的直径。机器中作回转运动的零件就装在轴上。根据轴线形状的不同,轴可以分为曲轴和直轴两类。根据轴的承载情况,又可分为:1 转轴 工作时既承受弯矩又承受扭矩,是机械中最常见的轴,如各种减速器中的轴等。2心
5、轴 用来支承转动零件只承受弯矩而不传递扭矩,有些心轴转动,如铁路车辆的轴等,有些心轴则不转动,如支承滑轮的轴等。3传动轴 主要用来传递扭矩而不承受弯矩,如起重机移动机构中的长光轴、汽车的驱动轴等。轴的材料主要采用碳素钢或合金钢,也可采用球墨铸铁或合金铸铁等。轴的工作能力一般取决于强度和刚度,转速高时还取决于振动稳定性。1.1本文的研究背景及意义在机械制造业当中,轴类零件的加工占了很大的比例,为此,轴类零件的加工工艺也变得很重要了。1.2 轴类零件的功用轴是组成机械的重要零件,也是机械加工中经常遇到的典型零件之一,它支撑着其它转动件回转并传递扭矩,同时又通过轴承与机器的机架连接。在机器中,主要用
6、来支承传动零件如齿轮、带轮,传递运动与扭矩,如机床主轴;有的用来装卡工件,如心轴。1.3 轴类零件的结构特点轴类零件是旋转体零件,其长度大于直径,通常由外圆柱面、圆锥面、螺纹、花键、键槽、横向孔、沟槽等表面构成。按其结构特点分类有:光轴、阶梯轴、空心轴和异形轴(包括曲轴、半轴、凸轮轴、偏心轴、十字轴和花键轴等)四类。1.4 轴类零件的主要技术要求尺寸精度 轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6IT9。几何精度 轴类零件一般是用两
7、个轴颈支撑在轴承上,这两个轴颈称为支撑轴颈,也是轴的装配基准。除了尺寸精度外,一般还对支撑轴颈的几何精度(圆度、圆柱度)提出要求。对于一般精度的轴颈,几何形状误差应限制在直径公差范围内,要求高时,应在零件图样上另行规定其允许的公差值。(3) 相互位置精度 包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。(4)表面粗糙度 轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.21.6m,传动件配合轴颈为0.43.2m。1.5 轴类零件的材料、毛坯及热处理 轴类零件材料 轴类零件材料的选取,主要根据轴的强度、刚度、耐磨性以及制
8、造工艺性而决定,力求经济合理。常用的轴类零件材料有 35、45、50优质碳素钢,以45钢应用最为广泛。对于受载荷较小或不太重要的轴也可用Q235、Q255等普通碳素钢。对于受力较大,轴向尺寸、重量受限制或者某些有特殊要求的可采用合金钢。如40Cr合金钢可用于中等精度,转速较高的工作场合,该材料经调质处理后具有较好的综合力学性能;选用Cr15、65Mn等合金钢可用于精度较高,工作条件较差的情况,这些材料经调质和表面淬火后其耐磨性、耐疲劳强度性能都较好;若是在高速、重载条件下工作的轴类零件,选用20Cr、20CrMnTi、20Mn2B等低碳钢或38CrMoA1A渗碳钢,这些港经渗碳淬火或渗氮处理后
9、,不仅有很高的表面硬度,而且其心部强度也大大提高,因此具有良好的耐磨性、抗冲击韧性和耐疲劳强度的性能。 球墨铸铁、高强度铸铁由于铸造性能好,且具有减振性能,常在制造外形结构复杂的轴中采用。特别是我国研制的稀土镁球墨铸铁,抗冲击韧性好,同时还具有减摩、吸振,对应力集中敏感性小等优点,已被应用于制造汽车、拖拉机、机床上的重要轴类零件。 轴类零件的毛坯 轴类零件的毛坯常见的有型材(圆棒料)和锻件。大型的,外形结构复杂的轴也可采用铸件。内燃机中的曲轴一般均采用铸件毛坯。 型材毛坯分热轧或冷拉棒料,均适合于光滑轴或直径相差不大的阶梯轴。 锻件毛坯经加热锻打后,金属内部纤维组织沿表面分布,因而有较高的抗拉
10、、抗弯及抗扭转强度,一般用于重要的轴。(3) 轴类零件的热处理 锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。第二章 轴类零件的加工工艺轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可
11、分为光轴、阶梯轴、空心轴和曲轴等。轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,主要要求如下:1 尺寸精度比一般的零件的尺寸精度要求高。轴类零件中支承轴颈的精度要求最高,为IT5IT7;配合轴颈的尺寸精度要求可以低一些,为IT6IT9。2 形状精度高。3 位置精度高,其一般轴的径向跳动为0.010.03,高精度的轴为0.0010.005。4 表面粗糙度比一般的零件高,支承轴颈和重要表面的表面粗糙度Ra常为0.10.8um,配合轴颈
12、和次要表面的表面粗糙度Ra为0.83.2um。第三章 轴类零件的加工工艺分析3.1 空心轴加工工艺分析空心轴的加工工艺根据其功用、结构形状、材料和热处理以及尺寸大小的不同而异。就其结构形状来划分,大体可以分为短空心轴和长空心轴两大类。它们在加工中,其装夹方法和加工方法都有很大的差别,以下分别予以介绍。 空心轴加工工艺分析加工 如图31所示的空心轴,材料为ZQSn6-6-3,每批数量为200件。图31空心轴1空心轴的技术条件和工艺分析该空心轴属于短空心轴,材料为锡青图31空心轴简图铜。其主要技术要求为:34js7外圆对22H7孔的径向圆跳动公差为0.01mm;左端面对 22H7孔轴线的垂直度公差
13、为0.01mm。轴承套外圆为IT7级精度,采用精车可以满足要求;内孔精度也为IT7级,采用铰孔可以满足要求。内孔的加工顺序为:钻孔车孔铰孔。 由于外圆对内孔的径向圆跳动要求在0.01mm内,用软卡爪装夹无法保证。因此精车外圆时应以内孔为定位基准,使空心轴在小锥度心轴上定位,用两顶尖装夹。这样可使加工基准和测量基准一致,容易达到图纸要求。 车铰内孔时,应与端面在一次装夹中加工出,以保证端面与内孔轴线的垂直度在0.01mm以内。 2空心轴的加工工艺 表3-1为空心轴的加工工艺过程。粗车外圆时,可采取同时加工五件的方法来提高生产率。 工序号工序名称工序内容定位基准1备料棒料,按6件合一下料2钻中心孔
14、1、车端面,钻中心孔2、掉头,车另一端面,钻中心孔外圆3粗车车外圆42,长度6.5,车外圆34js7至35,车退刀槽20.5,总长40.5,车分割槽203,两端倒角C1.5;6件同时加工,尺寸均相同。中心孔4钻钻22H7孔至20成单件42外圆车、铰1、车端面,总长40至尺寸;2、车内孔22H7,留0.040.06铰削余量;3、车内槽2416至尺寸;4、铰孔22H7至尺寸42外圆精车精车34js7至尺寸22H7孔心轴钻钻径向4油孔34js7外圆及端面检验检验入库表3-1空心轴加工工艺过程3.2 轴类零件加工中的主要工艺问题一般轴类零件在机械加工中的主要工艺问题是保证内外圆的相互位置精度(即保证内
15、、外圆表面的同轴度以及轴线与端面的垂直度要求)和防止变形。 1保证相互位置精度 要保证内外圆表面间的同轴度以及轴线与端面的垂直度要求,通常可采用下列三种工艺方案: (1)在一次安装中加工内外圆表面与端面。这种工艺方案由于消除了安装误差对加工精度的影响,因而能保证较高的相互位置精度。在这种情况下,影响零件内外圆表面间的同轴度和孔轴线与端面的垂直度的主要因素是机床精度。该工艺方案一般用于零件结构允许在一次安装中,加工出全部有位置精度要求的表面的场合。为了便于装夹工件,其毛坯往往采用多件组合的棒料,一般安排在自动车床或转塔车床等工序较集中的机床上加工。(2)全部加工分在几次安装中进行,先加工孔,然后
16、以孔为定位基准加工外圆表面。用这种方法加工空心轴,由于孔精加工常采用拉孔、滚压孔等工艺方案,生产效率较高,同时可以解决镗孔和磨孔时因镗杆、砂轮杆刚性差而引起的加工误差。当以孔为基准加工套筒的外圆时,常用刚度较好的小锥度心轴安装工件。小锥度心轴结构简单,易于制造,心轴用两顶尖安装,其安装误差很小,因此可获得较高的位置精度。2防止变形的方法 薄壁空心轴在加工过程中,往往由于夹紧力、切削力和切削热的影响而引起变形,致使加工精度降低。需要热处理的薄壁空心轴,如果热处理工序安排不当,也会造成不可校正的变形。防止薄壁空心轴的变形,可以采取以下措施: (1)减小夹紧力对变形的影响 夹紧力不宜集中于工件的某一
17、部分,应使其分布在较大的面积上,以使工件单位面积上所受的压力较小,从而减少其变形。例如工件外圆用卡盘夹紧时,可以采用软卡爪,用来增加卡爪的宽度和长度,如图772所示。同时软卡爪应采取自镗的工艺措施,以减少安装误差,提高加工精度。采用轴向夹紧工件的夹具。由于工件靠螺母端面沿轴向夹紧,故其夹紧力产生的径向变形极小。 (2)减少切削力对变形的影响 常用的方法有下列几种: 减小径向力,通常可借助增大刀具的主偏角来达到。 内外表面同时加工,使径向切削力相互抵消,见图775所示。 粗、精加工分开进行,使粗加工时产生的变形能在精加工中能得到纠正。 (3)减少热变形引起的误差 工件在加工过程中受切削热后要膨胀
18、变形,从而影响工件的加工精度。为了减少热变形对加工精度的影响,应在粗、精加工之间留有充分冷却的时间,并在加工时注入足够的切削液。 热处理对空心轴变形的影响也很大,除了改进热处理方法外,在安排热处理工序时,应安排在精加工之前进行,以使热处理产生的变形在以后的工序中得到纠正。 3.3 确定装夹方案由于夹具确定了零件在数控机床坐标系中的位置,因而根据要求夹具能保证零件在机床的正确坐标方向,同时协调零件与机床坐标系的尺寸。因此数控机床的夹具应定位可靠、稳定,一般采用三爪自定心卡盘、四爪单动卡盘或弹簧夹头。分析本工件为外轮廓加工,外表面可以依次加工,无内孔,可采用一次装夹完成粗、精加工。为了保证在加工螺
19、纹时确保工件不来回晃动,减少误差,一般以轴线和左端面为定位基准,左端采用三爪自定心卡盘定心夹紧,右端采用活动顶尖支撑装夹方案。3.4 确定加工路线及进给路线 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 粗车半精车精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 粗车半精车粗磨精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 粗车半精车精车金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多
20、用精车和金刚石车。 粗车半精粗磨精磨光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理预加工车削外圆铣键槽(花键槽、沟槽)热处理磨削终检。 以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准加工顺序的确定按由内到外、由粗到精、由近到远的原则确定,在一次装夹中尽可能加工出较多的工件表面。因此在本设计
21、中加工路线是按先粗车(给精车留余量1mm),然后再精车,按先主后次的加工原则尽量使“刀具集中”,即用一把刀加工完相应的部位,在换另一把刀加工其他部位。以减少空行程和换刀时间,因此:1 车外圆:自右向左加工,起加工路线为:先倒角切削螺纹的实际外圆28侧角切削锥度部分撤消圆弧部分车削66。2 切槽:考虑到槽不太宽,可采用一把刀一刀完成,选择刀具宽度与槽宽相等,分多刀步进切削。步进深度为1mm。3 车螺纹:分析螺纹深度不深,采用两刀完成螺纹加工。4 切断:零件加工结束后,选择切断刀将工件从棒料上分离出来完成一个零件的加工。3.5 刀具的选择与普通机床相比,数控加工时对刀具提出了更高的要求,不仅要求刚
22、性好、精度高,而且要求尺寸稳定、耐用度高、断屑和排屑性能好,同时要求安装调整方便,满足数控机床的高效率。因此,刀具的选择是数控车削加工工艺中的重要内容之一,它不仅影响机床加工效率而且直接影响零件的加工质量。在编程时选择刀具通常要考虑机床的加工能力、工序内容、被加工零件材料等因素。数控加工刀具材料要求采用新型优质材料,一般原则是尽可能选择硬质合金精密加工时还可选择性能更好、更耐磨的陶瓷立方氮化硼和金刚石刀具并优选刀具参数。一般来说需将所选定的刀具参数填入表轴承套数控加工刀具卡片中,以便于编程和操作管理。(2)切槽选择硬质合金切槽刀,刀尖宽度为5mm;(3)精车倒角、外圆、圆锥、圆弧。车M281.
23、5螺纹,应选用硬质合金60外螺纹刀,取刀尖半径为0.150.2mm。刀具选择完毕、工件装夹方式确定后,即可通过确定工件原点来确定工件坐标系。如果要运行这一程序来加工工件,必须确定刀具在工件坐标系开始运动的起点。程序起始点或起刀点一般通过对刀来确定,所以,该点又称为对刀点。在编制程序时,要正确选择对刀点的位置。对刀点设置原则是:(1)便于数值处理和简化程序编制;(2)易于找正并在加工过程中便于查找;(3)引起的加工误差小;(4)对刀点可以设置在加工零件上,也可以设置在夹具或机床上。综上所述在程序编制中,编程人员必须充分掌握构成零件轮廓的几何要素参数及各几何要素间的关系。因为在自动编程时要对零件轮
24、廓的所有几何元素进行定义,手工编程时要计算出每个节点的坐标,无论哪一点不明确或不确定,编程都无法进行。但由于零件设计人员在设计过程中考虑不周或被忽略,常常出现参数不全或不清楚,如圆弧与直线、圆弧与圆弧是相切还是相交或相离。所以在审查与分析图纸时,一定要仔细核算,发现问题及时与设计人员联系。零件的外形最好采用统一的几何类型及尺寸,这样可以减少换刀次数,还可能应用控制程序或专用程序以缩短程序长度。零件的形状尽可能对称,便于利用数控机床的镜向加工功能来编程,以节省编程时间。3.6 选择切削用量数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写入程序中。切削用量包括主轴转速、背吃刀量及进
25、给速度等。对于不同的加工方法,需要选用不同的切削用量。切削用量的选择原则是:保证零件加工精度和表面粗糙度,充分发挥刀具切削性能,保证合理的刀具耐用度;并充分发挥机床的性能,最大限度提高生产率,降低成本。3.7 主轴转速的确定主轴转速应根据允许的切削速度和工件(或刀具)直径来选择。根据本次加工的实际情况选择主轴转速为:车直线、圆弧和切槽时其粗车主轴转速为400r/min,精车时,主轴转速900r/min,车螺纹时的主轴转速为400r/min。3.8 进给速度的确定进给速度是数控机床切削用量中的重要参数,主要根据零件的加工进度和表面粗糙度要求以及刀具、工件的材料性质选取。最大进给速度受机床刚度和进
26、给系统的性能限制。一般粗车选用较高的进给速度,以便较快去除毛坯余量,精车以考虑表面粗糙和零件精度为原则,应选择较低的进给速度,得出下表粗精外圆0.15min/r0.08min/r内孔0.05min/r0.04min/r槽0.04 min/r在本例中选择进给速度为:粗车时,选取进给量为0.14mm/r,精车时,选取进给量为0.08mm/r,车螺纹时,进给量等于螺纹导程,选为1.5mm/r。3.9 背吃刀量确定背吃刀量根据机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量(除去精车量),这样可以减少走刀次数,提高生产效率。为了保证加工表面质量,可留少量精加工余量
27、,一般0.2-0.4mm。本例中,背吃刀量的选择大致为如下表4.3.3:如表4.3.3:粗精外圆1.5-2(mm)0.2-0.4(mm)内孔1-1.5(mm)0.1-0.3(mm)螺纹随进刀次数依次减少槽根据刀宽,分两次进行注意:背吃刀量的选择因粗、精加工而有所不同。粗加工时,在工艺系统刚性和机床功率允许的情况下,尽可能取较大的背吃刀量,以减少进给次数;精加工时,为保证零件表面粗糙度要求,背吃刀量一般取0.l0.4 mm较为合适。故在本例中粗加工时:切削深度为4mm,精车时切削深度为0.4mm。第四章 轴类零件的编程数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机
28、、自动控制、自动检测及精密机械等高新技术的产物。随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。数控车床是目前使用最广泛的数控机床之一。4.1 编程技巧数控车床与普通车床相比,一个显著的优点是:对零件变化的适应性强,更换零件只需改变相应的程序,对刀具进行简单的调整即可做出合格的零件,为节约成本赢得先机。但是,要充分发挥数控机床的作用,不仅要有良好的硬件,(如:优质的刀具、机床的精度等),更重要的是软件:编程,即根据不同的零件的特点,编制合理、高效的加工程序。数控车床虽然加工柔性比普通车床优越,但单就某一种零件的生产效率而言,与普通车床
29、还存在一定的差距。因此,提高数控车床的效率便成为关键,而合理运用编程技巧,编制高效率的加工程序,对提高机床效率往往具有意想不到的效果。 1)灵活设置参考点 一般来说,数控车床共有二根轴,即主轴Z和刀具轴X。棒料中心为坐标系原点,各刀接近棒料时,坐标值减小,称之为进刀;反之,坐标值增大,称为退刀。当退到刀具开始时位置时,刀具停止,此位置称为参考点。参考点是编程中一个非常重要的概念,每执行完一次自动循环,刀具都必须返回到这个位置,准备下一次循环。因此,在执行程序前,必须调整刀具及主轴的实际位置与坐标数值保持一致。然而,参考点的实际位置并不是固定不变的,编程人员可以根据零件的直径、所用的刀具的种类、
30、数量调整参考点的位置,缩短刀具的空行程。从而提高效率。2)化零为整法 在低压电器中,存在大量的短销轴类零件,其长径比大约为23,直径多在3mm以下。由于零件几何尺寸较小,普通仪表车床难以装夹,无法保证质量。如果按照常规方法编程,在每一次循环中只加工一个零件,由于轴向尺寸较短,造成机床主轴滑块在床身导轨局部频繁往复,弹簧夹头夹紧机构动作频繁。长时间工作之后,便会造成机床导轨局部过度磨损,影响机床的加工精度,严重的甚至会造成机床报废。而弹簧夹头夹紧机构的频繁动作,则会导致控制电器的损坏。要解决以上问题,必须加大主轴送进长度和弹簧夹头夹紧机构的动作间隔,同时不能降低生产率。由此设想是否可以在一次加工
31、循环中加工数个零件,则主轴送进长度为单件零件长度的数倍,甚至可达主轴最大运行距离,而弹簧夹头夹紧机构的动作时间间隔相应延长为原来的数倍。更重要的是,原来单件零件的辅助时间分摊在数个零件上,每个零件的辅助时间大为缩短,从而提高了生产效率。为了实现这一设想,我联想到电脑程序设计中主程序和子程序的概念,如果将涉及零件几何尺寸的命令字段放在一个子程序中,而将有关机床控制的命令字段及切断零件的命令字段放在主程序中,每加工一个零件时,由主程序通过调用子程序命令调用一次子程序,加工完成后,跳转回主程序。需要加工几个零件便调用几次子程序,十分有利于增减每次循环加工零件的数目。通过这种方式编制的加工程序也比较简
32、洁明了,便于修改、维护。值得注意的是,由于子程序的各项参数在每次调用中都保持不变,而主轴的坐标时刻在变化,为与主程序相适应,在子程序中必须采用相对编程语句。 3)减少刀具空行程 在数控车床中,刀具的运动是依靠步进电动机来带动的,尽管在程序命令中有快速点定位命令G00,但与普通车床的进给方式相比,依然显得效率不高。因此,要想提高机床效率,必须提高刀具的运行效率。刀具的空行程是指刀具接近工件和切削完毕后退回参考点所运行的距离。只要减少刀具空行程,就可以提高刀具的运行效率。(对于点位控制的数控车床,只要求定位精度较高,定位过程可尽可能快,而刀具相对工件的运动路线是无关紧要的。)在机床调整方面,要将刀
33、具的初始位置安排在尽可能靠近棒料的地方。在程序方面,要根据零件的结构,使用尽可能少的刀具加工零件使刀具在安装时彼此尽可能分散,在很接近棒料时彼此就不会发生干涉;另一方面,由于刀具实际的初始位置已经与原来发生了变化,必须在程序中对刀具的参考点位置进行修改,使之与实际情况相符,与此同时再配合快速点定位命令,就可以将刀具的空行程控制在最小范围内从而提高机床加工效率。 4)优化参数,平衡刀具负荷,减少刀具磨损 由于零件结构的千变万化,有可能导致刀具切削负荷的不平衡。而由于自身几何形状的差异导致不同刀具在刚度、强度方面存在较大差异,例如:正外圆刀与切断刀之间,正外圆刀与反外圆刀之间。如果在编程时不考虑这
34、些差异。用强度、刚度弱的刀具承受较大的切削载荷,就会导致刀具的非正常磨损甚至损坏,而零件的加工质量达不到要求。因此编程时必须分析零件结构,用强度、刚度较高的刀具承受较大的切削载荷,用强度、刚度小的刀具承受较小的切削载荷,使不同的刀具都可以采用合理的切削用量,具有大体相近的寿命,减少磨刀及更换刀具的次数。 4.2 编程特点1)在一个程序段中,根据图样上标注的尺寸,可以采用绝对值编程、增量值编程或二者混合编程。2)由于被加工零件的径向尺寸在图样上和测量时,都是以直径值表示。所以直径方向用绝对值编程时,X以直径值表示,用增量值编程时,以径向实际位移量的二倍值表示,并附上方向符号(正向可以省略)。3)
35、为提高工件的径向尺寸精度,X向的脉冲当量取Z向的一半。4)由于车削加工常用棒料或锻料作为毛坯,加工余量较大,所以为简化编程,数控装置常具备不同形式的固定循环,可进行多次重复循环切削。 5)编程时,常认为车刀刀尖是一个点,而实际上为了提高刀具寿命和工件表面质量,车刀刀尖常磨成一个半径不大的圆弧,因此为提高工件的加工精度,当编制圆头刀程序时,需要对刀具半径进行补偿。大多数数控车床都具有刀具半径自动补偿功能(G41、G42)这类数控车床可直接按工件轮廓尺寸编程。对不具备刀具半径自动补偿功能的数控车床,编程时,需先计算补偿量。4.3 编程方法数控编程方法有手工编程和自动编程两种。手工编程是指从零件图样
36、分析工艺处理、数据计算、编写程序单、输入程序到程序校验等各步骤主要有人工完成的编程过程。它适用于点位加工或几何形状不太复杂的零件的加工,以及计算较简单,程序段不多,编程易于实现的场合等。但对于几何形状复杂的零件,以及几何元素不复杂但需编制程序量很大的零件,由于编程时计算数值的工作相当繁琐,工作量大,容易出错,程序校验也较困难,用手工编程难以完成,因此要采用自动编程。所谓自动编程即程序编制工作的大部分或全部有计算机完成,可以有效解决复杂零件的加工问题,也是数控编程未来的发展趋势。4.4 编程步骤拿到一张零件图纸后,首先应对零件图纸分析,确定加工工艺过程,也即确定零件的加工方法,加工路线及工艺参数
37、。其次应进行数值计算。绝大部分数控系统都带有刀补功能,只需计算轮廓相邻几何元素的交点(或切点)的坐标值,得出各几何元素的起点终点和圆弧的圆心坐标值即可。最后,根据计算出的刀具运动轨迹坐标值和已确定的加工参数及辅助动作,结合数控系统规定使用的坐标指令代码和程序段格式,逐段编写零件加工程序单,并输入CNC装置的存储器中。设计总结以上就是本次设计的全过程。这次设计不仅使我对所设计的零件有了更深的了解,还使我学到了许多在书本上学不到的东西,这对我以后走上社会,走向工作岗位都有十分重要的意义。毕业设计是综合运用所学知识进行设计实践的环节,对我在实际生产中进行调查研究的能力、观察问题、分析问题能力的培养至
38、关重要。毕业设计不仅使我完善和复习了以前所学知识,同时从老师同学那里学到了在课本上学不到的知识,在工厂里领会了许多以前不懂的内容。它们将对我以后的工作、学习和生活产生深远影响。总之,一句话,毕业设计使我受益匪浅!但是,这次毕业设计我分析的轴类零件加工工艺以及编程设计中,由于自己学识疏浅,未能更深层次地发掘和研究,这些仍需进一步地补充和完善。本次设计是在谢凡导师耐心指导和悉心关怀下完成的,他对我们的高度责任心,给我的学习、生活和工作有很大的影响,并将激励我永远奋发向上。参考文献1郑文伟,吴克坚机械原理北京:高等教育出版社,19972卢玉明机械设计基础北京:高等教育出版社,19983华大年机械原理北京:高等教育出版社,19944濮良贵,纪名刚机械设计北京:高等教育出版社,20015杨有君数控技术北京:机械工业出版社,20056. 周虹.数控加工工艺与编程.人民邮电出版社,20047. 刘雄伟.数控机床操作与编程培训教程.机械工业出版社,20018. 杨仲冈.数控加工技术.机械工业出版社,20019. 顾京.数控机床加工程序编制.机械工业出版社,1999