质量工程师抽样检验.ppt

上传人:李司机 文档编号:3214678 上传时间:2023-03-11 格式:PPT 页数:99 大小:328.50KB
返回 下载 相关 举报
质量工程师抽样检验.ppt_第1页
第1页 / 共99页
质量工程师抽样检验.ppt_第2页
第2页 / 共99页
质量工程师抽样检验.ppt_第3页
第3页 / 共99页
质量工程师抽样检验.ppt_第4页
第4页 / 共99页
质量工程师抽样检验.ppt_第5页
第5页 / 共99页
点击查看更多>>
资源描述

《质量工程师抽样检验.ppt》由会员分享,可在线阅读,更多相关《质量工程师抽样检验.ppt(99页珍藏版)》请在三一办公上搜索。

1、内容,概率的基础知识统计的基本概念回归分析,第一节概率的基础知识,事件及其概率二项分布与正态分布,一、事件及其概率,(一)随机现象,确定性现象随机现象,随机现象,结果至少两个结果不确定,随机现象的样本空间,样本空间样本点每个结果包括随机事件的所有结果样本空间至少包含两个样本点,要求,会识别随机现象会计算样本空间的所有样本点,例题(例题摘自上海质量杂志社出版的2007年辅导资料和课后练习题),下列不是随机现象的是:商店开门时间 每天维修电视的数量 抽取100件产品出现的不合格品数 饮料的罐装重量 一包香烟包含尼古丁的数量,(二)随机事件,由随机现象的某些样本点组成样本空间的一个子集可用集合表示也

2、可用语言表示,掷嗀子,样本空间=1 2 3 4 5 6 随机事件:点数小于7点 点数大于等于2点 点数大于7点,随机事件点数小于7点,包含样本点 1,2,3,4,5,6必然事件包括所有样本点样本空间的最大子集用表示,随机事件点数大于7,不包含样本点 不可能事件样本空间的最小子集用表示,随机事件点数大于等于2点,包含样本点 2,3,4,5,6其中任意样本点发生随机事件A发生,随机事件的维恩图,A,要求,能找到样本空间所有的样本点能找到任一随机事件的样本点P115例题,随机事件的关系,包含互不相容相等,(三)事件的运算,对立事件 事件的并事件的交,对立事件,事件A 对立事件 A不发生两者构成样本空

3、间的对立事件是,事件的并,事件A事件BAUB包括A和B的所有样本点A与B至少一个发生A或者BAUB=A+B-AB,事件的交,事件A事件B两个事件共同的样本点A和B共同发生AB AB,要求,识别事件件关系会事件间运算,(四)事件的概率,随机事件发生的可能性的大小用P(A)表示大于等于0小于等于1 发生可能性越小 概率越小,概率定义,有大量稳定的重复试验n次重复试验事件A发生k次概率近似为,概率的性质,P()=0P()=1P(A)在0和1之间互不相容的事件的并的概率 P(AUB)=P(A)+P(B)对立事件的概率独立事件的交的概率 P(AB)=P(A)P(B),样本空间及其概率,P()=1,例题,

4、一批产品有4个不合格品,抽到不合格品的概率不合格品数 X 0 1 2 3 4 概率P(x)0.1 0.2 0.3 0.3 0.1抽到2到4个不合格品的概率不合格品大于2的概率,例题,X 0 1 2 3 4P 0.1 0.3 0.2 0.1 P(X=4)P(0X3),二、二项分布与正态分布,(一)随机变量及其分布,随机变量随机变量的分布,随机变量,表示随机现象结果的变量X、Y表示X、y表示随机变量的取值离散型变量连续型变量,离散型变量,用自然数表示有限个取值点,离散型变量,进店人数电视机故障数桌面的瑕疵点玻璃上的气泡数,连续型变量,取值为一个范围 寿命在1000到2000小时取值有小数,连续型变

5、量,工人工资企业利润产品尺寸产品重量,随机变量的分布,随机变量的取值是什么 从包含4个不合格品的产品批中抽取10个产品出现的不合格品数 0 1 2 3 4 取值的概率为多少概率和为1,离散型随机变量的分布,离散变量X 0 1 2 3 4 P(x)0.12 0.32 0.13 0.21P(1X4)=P(X=3)=,离散随机变量,二项分布,连续型变量的分布,用概率密度函数表示概率密度曲线在x轴上方概率密度曲线与x轴围城的面积为1横坐标是变量X的取值范围,X在范围上取值,连续型分布,正态分布,随机变量分布的特征数,均值 表示分布中心方差和标准差 表示散布程度,标准差越大,分散程度越大,(二)二项分布

6、,条件:n次重复试验 独立试验 结果有两个 成功概率p 不成功概率为1-p,二项分布,表示方法b(n,p)概率计算 E(X)=npVar(x)=np(1-p),(三)正态分布,概率密度函数公式正态分布形状两个重要的参数标准正态分布分位数概率计算不合格品率的计算正态分布的性质,正态分布,最常用的分布大量加工数据服从正态分布,概率密度公式和意义,概率密度公式取值从-到+概率密度与X轴形成的面积表示取值范围内的概率,正态分布形状,对称分布,两个重要的参数,均值 决定分布位置标准差 决定分布的形状,标准正态分布,中心为0标准差为1概率密度函数,正态分布的分位数,u0.9=1.282,0.1,0.9,分

7、位数,u0.5=0u0.25=-u0.75u0.1=-u0.9,正态分布的概率计算,XN(10,2)U=,不合格品率的计算,p129,第二节 统计的基本概念,样本与统计量参数估计,一、样本与统计量,(一)总体和个体,研究对象的全体 总体:可以是对象的全体 指标的全体 总体是唯一的 总体指标往往是未知(参数)总体分布,研究总体内容,总体构成范围总体数据取值范围总体分布(正态、二项等)总体均值(位置)总体方差(分散程度),(二)样本,随机性独立性样本个数有多个样本数据已知的,形成统计量样本指标是随机变量用统计量推断总体参数,(三)统计量与抽样分布,统计量 由样本数据计算得到 不含未知参数,(四)常

8、用统计量,描述中心位置的统计量描述分散程度的统计量,有序样本,从小到大排列表示方法x(1),描述中心位置的样本统计量,样本均值样本中位数,样本均值,计算p132广泛使用反映集中位置的指标,样本中位数,有序样本中间位置上的数值,描述分散程度的样本统计量,反映数据的差异样本极差样本方差和标准差,样本极差,由两个端点值计算信息利用不充分,样本方差,由离差计算得到应用更广泛,(五)样本数据的整理,频数分布表直方图,频数分布表的步骤,极差(数据范围)R 最大值-最小值根据样本量确定组数K(经验值)确定组距h=R/K确定组限和组中值计算频数和频率作图,直方图类型,频数直方图频率直方图,直方图图示,横坐标为

9、测量值,标出组限纵坐标为频数或频率(等距分组时)纵坐标为频数(频率)/组距的值(不等距分组),直方图的作用,分析数据的分布情况,直方图形状,对称形(很多测量型数据服从)偏态(单侧公差、操作习惯、挑选后)孤岛(生产条件发生变化)平顶形(生产条件缓慢变化、多种生产条件混合)双峰形(两种生产条件),二、参数估计,点估计无偏性概念正态总体的无偏性,(一)点估计,用样本统计量估计总体参数,(二)无偏性概念,每次估计会有偏差但平均偏差为0,任何总体的无偏估计,样本均值是总体均值的无偏估计样本方差是总体方差的无偏估计样本标准差不是总体标准差的无偏估计,(三)正态总体的无偏估计,总体均值的无偏估计 样本均值和

10、样本中位数样本方差是总体方差的无偏估计样本标准差不是总体标准差的无偏估计总体标准差的无偏估计有两个 用样本标准差估计s/c4 用样本极差估计R/d2,正态总体总体均值的无偏估计,均值使用了全部信息,更有效中位数计算简单n=1,2时,两者相同,正态总体方差的估计,是所有无偏估计中最有效的,正态总体标准差的估计,n=2时两个估计相同用标准差估计利用了全部信息更有效用极差估计简单样本量大于10用标准差估计,三、正态概率纸,特殊的坐标纸横坐标等间隔纵坐标按标准正态分布计算,正态概率纸的作用,检验数据是否是正态分布求出正态分布的均值和标准差对非正态分布作正态转换,检验数据是否服从正态分布步骤,形成有序样

11、本计算累计概率的估计值描点判断是否在一条直线上正态分布,估计正态总体的均值和标准差,画出一条直线l纵轴0.5处画一条水平线与直线l相交,从交点下垂与横轴的交点处为均值估计值从纵轴0.84处画一水平线与直线相交,从交点下垂与横轴的交点是+横坐标两点之间是,对非正态总体的转换,常用的两个 对原始数据作对数变换y=lnx 对原始数据作倒数变换y=1/x,第三节 回归分析,散布图与相关系数一元线形回归,一、散布图与相关系数,相关关系,现象之间存在一定依存关系,但不是确定的一一对应关系分析目的:现象之间相关方向和相关密切程度,(一)散布图,描述两变量间的关系,(二)相关系数,用来说明在线性相关的条件下,两个变量间关系的密切程度和方向的统计指标计算含义,(x-)(y-)0(x-)(y-)0(x-)(y-)0,相关系数的意义,p145,相关系数的检验,用样本的相关系数检验总体是否相关,二、一元线性回归方程,一元线性回归方程,两个变量间的关系表达式,线性方程的假定,X自变量因变量Y是随机变量n组数据是独立的Y的方差对所有x相等Y的均值对x是线性的,(一)一元线性回归方程的求法,感谢大家!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号