初一数学定理公式大全.docx

上传人:小飞机 文档编号:3323429 上传时间:2023-03-12 格式:DOCX 页数:10 大小:40.97KB
返回 下载 相关 举报
初一数学定理公式大全.docx_第1页
第1页 / 共10页
初一数学定理公式大全.docx_第2页
第2页 / 共10页
初一数学定理公式大全.docx_第3页
第3页 / 共10页
初一数学定理公式大全.docx_第4页
第4页 / 共10页
初一数学定理公式大全.docx_第5页
第5页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《初一数学定理公式大全.docx》由会员分享,可在线阅读,更多相关《初一数学定理公式大全.docx(10页珍藏版)》请在三一办公上搜索。

1、初一数学定理公式大全定义定理 一、算术方面 1加法交换律:两数相加交换加数的位置,和不变。 2加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3乘法交换律:两数相乘,交换因数的位置,积不变。 4乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:525+45。 6除法的性质:在除法里,被除数和除数同时扩大相同的倍数,商不变。0除以任何不是0的数都得0。 7等式:等号左边的数值与等号右边的数值相等的式子叫做等式

2、。 等式的基本性质:等式两边同时乘以一个相同的数,等式仍然成立。 8方程式:含有未知数的等式叫方程式。 9一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有的算式并计算。 10分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13分数乘整数,用分数的分子和整数

3、相乘的积作分子,分母不变。 14分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15分数除以整数,等于分数乘以这个整数的倒数。 16真分数:分子比分母小的分数叫做真分数。 17假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18带分数:把假分数写成整数和真分数的形式,叫做带分数。 19分数的基本性质:分数的分子和分母同时乘以或除以同一个数,分数的大小不变。 20一个数除以分数,等于这个数乘以分数的倒数。 21甲数除以乙数,等于甲数乘以乙数的倒数 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一

4、点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不

5、相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角

6、的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于

7、斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=

8、c2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理 n边形的内角的和等于180 51推论 任意多边的外角和等于360 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判

9、定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线

10、相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线

11、,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=2 S=Lh 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论

12、 平行于三角形一边的直线截其他两边,所得的对应线段成比例 88 定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似 94 判定定理3 三边对应成比例,两三角形相似 95 定理 如果一个直角三角形的斜边和一条直

13、角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 圆面积=半径的平

14、方乘以派 长方形的周长=2 正方形的周长=边长4 长方形的面积=长宽 正方形的面积=边长边长 三角形的面积=底高2 平行四边形的面积=底高 梯形的面积=高2 直径=半径2 半径=直径2 圆的周长=圆周率直径= 圆周率半径2 圆的面积=圆周率半径半径 长方体的表面积= 2 长方体的体积 =长宽高 正方体的表面积=棱长棱长6 正方体的体积=棱长棱长棱长 圆柱的侧面积=底面圆的周长高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积高 圆锥的体积=底面积高3 长方体 的体积=底面积高 平面图形 名称 符号 周长C和面积S 正方形 a边长 C4a Sa2 长方形 a和b边长 C2(a+b) Sa

15、b 三角形 a,b,c三边长 ha边上的高 s周长的一半 A,B,C内角 其中s(a+b+c)/2 Sah/2 ab/2sinC s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA) 四边形 d,D对角线长 对角线夹角 SdD/2sin 平行四边形 a,b边长 ha边的高 两边夹角 Sah absin 菱形 a边长 夹角 D长对角线长 d短对角线长 SDd/2 a2sin 梯形 a和b上、下底长 h高 m中位线长 S(a+b)h/2 mh 圆 r半径 d直径 Cd2r Sr2 d2/4 扇形 r扇形半径 a圆心角度数 C2r2r(a/360) Sr2(a/360) 弓形

16、 l弧长 b弦长 h矢高 r半径 圆心角的度数 Sr2/2(/180-sin) r2arccos(r-h)/r - (r-h)(2rh-h2)1/2 r2/360 - b/2r2-(b/2)21/2 r(l-b)/2 + bh/2 2bh/3 圆环 R外圆半径 r内圆半径 D外圆直径 d内圆直径 S(R2-r2) (D2-d2)/4 椭圆 D长轴 d短轴 SDd/4 立方图形 名称 符号 面积S和体积V 正方体 a边长 S6a2 Va3 长方体 a长 b宽 c高 S2(ab+ac+bc) Vabc 棱柱 S底面积 h高 VSh 棱锥 S底面积 h高 VSh/3 棱台 S1和S2上、下底面积 h

17、高 VhS1+S2+(S1S1)1/2/3 拟柱体 S1上底面积 S2下底面积 S0中截面积 h高 Vh(S1+S2+4S0)/6 圆柱 r底半径 h高 C底面周长 S底底面积 S侧侧面积 S表表面积 C2r S底r2 S侧Ch S表Ch+2S底 VS底h r2h 空心圆柱 R外圆半径 r内圆半径 h高 Vh(R2-r2) 直圆锥 r底半径 h高 Vr2h/3 圆台 r上底半径 R下底半径 h高 Vh(R2Rrr2)/3 球 r半径 d直径 V4/3r3d2/6 球缺 h球缺高 r球半径 a球缺底半径 Vh(3a2+h2)/6 h2(3r-h)/3 a2h(2r-h) 球台 r1和r2球台上、下底半径 h高 Vh3(r12r22)+h2/6 圆环体 R环体半径 D环体直径 r环体截面半径 d环体截面直径 V22Rr2 2Dd2/4 桶状体 D桶腹直径 d桶底直径 h桶高 Vh(2D2d2)/12 (母线是圆弧形,圆心是桶的中心) Vh(2D2Dd3d2/4)/15

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号