高等代数与解析几何之间的关联性.doc

上传人:文库蛋蛋多 文档编号:3439610 上传时间:2023-03-13 格式:DOC 页数:8 大小:224.50KB
返回 下载 相关 举报
高等代数与解析几何之间的关联性.doc_第1页
第1页 / 共8页
高等代数与解析几何之间的关联性.doc_第2页
第2页 / 共8页
高等代数与解析几何之间的关联性.doc_第3页
第3页 / 共8页
高等代数与解析几何之间的关联性.doc_第4页
第4页 / 共8页
高等代数与解析几何之间的关联性.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《高等代数与解析几何之间的关联性.doc》由会员分享,可在线阅读,更多相关《高等代数与解析几何之间的关联性.doc(8页珍藏版)》请在三一办公上搜索。

1、高等代数与解析几何之间的关联性内容摘要:在我们的学习过程中,可以发现高等代数和解析几何中有很多相似之处。确切的说是高等代数中的一些理论是从解析几何中发展和改进而来的。比如说通过解析几何中多元一次方程组的解法高等代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。也是通过行列式,多元方程组的解答更便捷、快速。又比如说欧式空间的提出。我们都知道几何空间中的向量以及他的一些性质。在高等代数中先后提出来线性空间、欧式空间。线性空间将向量做了推广,使向量抽象化。欧式空间在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。总体来说高等代数与解析几何是相互联

2、系、相互促进的。可以更确切一点的说是解析几何是高等代数的基石,而高等代数是解析几何的推广和并使之抽象化。 关键词:行列式、正交变换、向量、线性方程组、二次型和二次曲线、二次曲面、欧式空间导言:从代数与几何的发展来看,高等代数与解析几何从来就是相互联系、相互促进的。它们的关系可以归纳为“代数为几何提供研究方法,几何为代数提供直观背景”。通过对高等代数和解析几何的学习和研究中,我们可以看到解析几何和高等代数中有着紧密的联系。运用解析几何来分析高等代数更直观,同时,高等代数也是解析几何的一个发展、拓宽。比如说欧式空间。运用高等代数的解题方法来解答解析几何中的一些问题更加简便,快捷。比如说运用行列式的

3、计算来解答多元方程组问题。内容: 解析几何中以代数为工具,解析几何中的很多概念、方法都是应用线性代数的知识来定义来刻画、描述和表达的。例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义。例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型。从概念的内涵的外延来看,两门课之间存在着特殊与一般的关系,解析几何的一、二、三维空间是线性代数n维空间的特例,而线性空间的大量理论又是来源于

4、一、二、三维几何空间的推广(抽象)。平面方程及平面间的位置关系与线性方程组的理论,二次曲线,二次曲面的化简与代数中的二次型理论,几何与代数中欧式空间的理论等等。(一)线性代数中一些概念的几何直观解释:1.关于行列式的几何背景设=(),=(),=();两个向量的向量积可以用行列式写为它在几何上表示的是与,向量都垂直且成右手系的向量。三个向量的混合积可以用行列式表示为图1平行六面体()=()=此行列式的几何解释是它的绝对值等于以它们3个向量为相邻棱所作的平行六面体的体积(如图1)。特别地,当(,)=0时,由于平行六面体的体积为零,所以图1平行六面体由此可得:过平面上两点(), ()的直线方程为再推

5、广到空间中有不在同一直线上的三点(xi,yi,zi)(i=1,2,3)的平面方程为2.关于正交变换的几何意义在二次型化为标准型时,可以采用可逆变换或正交变换,但是由于可逆变换对应于仿射坐标系的变换,正交变换则对应于直角坐标系的变换,所以区别比较大。例如: 通过可逆线性变换化成,即椭球面变成了球面。通过线性变换,化成,即椭球面变成了圆柱面。而正交变换保持向量长度和角度不变,因此几何图形不变。所以在讨论二次方程决定的图形时,必须用正交变换;如果只考虑它所属类型时,可以用可逆变换(当然包括正交变换)。还应注意正交变换中:当正交阵的行列式表示为1时,是旋转变换;当正交阵的行列式为-1时,为镜面反射变换

6、。3. 关于正交化的几何解释线性无关的向量组可以由Schmidt正交化得到与其等价的正交组,它的几何解释为,如果有3个线性无关的向量则可以通过Schmidt正交化得到相应的3个正交向量。这里, , ,其中2为2在1上的投影向量;3为3在1、2所确定的平面上的垂直投影向量。(二)向量组线性相关(无关)与几何中向量共面、共线之间的关系若,是三维空间的向量,则:线性相关;,线性相关;,线性相关分别对应于几何直观的为零向量;,共线;,共面。因此,一维空间的基是空间中任意一个非零向量;二维空间的基是空间中两个不共线向量;三维空间的基是空间中3个不共面的向量组成的。例1在三维空间中有向量,OA =(),O

7、B =(),OC =(),那么,A,B,C共线的充分必要条件是什么?解:过A,B两点的直线方程为,显然,当且仅当C点满足此方程时,A,B,C共线,即存在t,使得OC =(1-t)OA +tOB ,于是,A,B,C共线,当且仅当OA ,OB ,OC 中某一向量可以由其余向量线性表示,而且表出系数之和为1。(三)线性方程组与直线、平面的位置关系 空间直线、平面的位置关系为线性方程组的结构理论提供了直观的几何解释,同样线性代数中的线性方程组的结构理论对深刻领会直线、平面的位置关系起到重要作用。 例2已知平面上有三条不同的直线,它们的直线方程分别为 ,试证这3条直线交于一点的充分必要条件为a+b+c=

8、0。证明:必要性,设3条直线l1, l2, l3相交于一点,则线性方程组有唯一解,故系数矩阵A=与增广矩阵的秩均为2,于是|=0由于但是(a-b)2+(b-c)2+(c-a)20,a+b+c=0充分性,由a+b+c=0,则从必要性的证明可知: |=0,故:秩()0;当0 a 时,由图2仿射坐标2. 二次型与二次曲面和二次曲线的联系待添加的隐藏文字内容3在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是a+2bxy+c=f (1)为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度作转轴(反时针方向转轴)x=cos-sin;y=sin+cos (2)把方程(1)化

9、为标准方程。在二次曲面的研究中也有类似情况。从代数角度看,所谓化标准方程就是用变量的线性代换(2)化简一个二次其次多项式,使它只含有平方项。二次型就是在这个基础上提出来的。就譬如说二次曲面吧。研究二次曲面的形状,可以利用矩阵运算,把方程写为其中这里, i,j=1,2,3再利用实对称矩阵可以正交相似对角化知,有正交变换x=Qy,使得这样则由于正交变换对应坐标原点不动的坐标轴的变换,因此,方程中的常数项不变。于是就可据此用解析几何讨论图形的形状。二次型化为标准形可以利用解析几何中二次曲线,二次曲面来直观表示;同时,一些二次曲面,二次曲线的化为标准方程的化简可以运用高等代数中的二次型化为标准形的方法

10、来简化,例如配方法、初等变换以及正交变换。例如.化简二次曲面2xy+2xz-6yz=0可利用二次型中的初等变换,配方法或正交变换来化简。比如初等变换f(x,y,z)= 2xy+2xz-6yzA=则由=故原二次曲面可经过坐标变换化简为2-2+6=0.利用正交变换也可以。3. 欧式空间的几何理论在线性空间中,向量之间的基本运算只有加法和数乘,统称为线性运算。如果我们以几何空间中的向量作为线性空间理论的一个具体模型,那么就会发现向量的度量性质,如长度、夹角等。在解析几何中我们看到,向量的长度、夹角等度量性质都可以通过向量的内积来表示,而且向量的内积有明显的代数性质。在这种情况下,欧几里得空间(即欧式

11、空间)应运而生。结论:高等代数与解析几何密不可分。二者是相互联系、相互促进的。参考文献【1】王萼芳,石生明修订.高等代数M. (第三版).北京: 高等教育出版社,2003:9【2】谢琳,张静修订.从几何直观理解行列式与Cramer法则.高等数学研究,2009.01-15【3】滕树军修订.线性代数的几何化与应用化教学探讨.河北工业大学成人教育学院学报,2008.9-13【4】邹建成,李国富修订.线性代数教学中的几何方法.北方工业大学学报,1998.05-15【5】韩瑞珠修订.线性代数和空间解析几何教学中的一点体会.大学数学,2002.12-30【6】许定亮修订.在线性代数教学中融入几何解释.常州工学院学报,2006.04-30

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号