《机械工程材料复习资料.docx》由会员分享,可在线阅读,更多相关《机械工程材料复习资料.docx(18页珍藏版)》请在三一办公上搜索。
1、机械工程材料复习资料机械工程材料复习资料 1. 词汇 绪论 introduction 绪论properties 性能materials 材料structures 组织,结构phase 相 substance 物质internal structure 内部组织,内部结构convention ceramics 传统陶瓷fined ceramics 精细陶瓷engineering materials 工程材料 polymer 聚合物 ceramic 陶瓷 composite 复合材料 ferrous metal 黑色金属 nonferrous metal 有色金属 alloy 合金 light me
2、tals 轻金属 heavy metals 重金属 noble metals 贵金属 metalloid 类金属, 半导体 rare metals 稀有金属 aluminum 铝 magnesium 镁 copper 铜 nickle 镍 polymeric materials 聚合材料,高分子材料 molecular 分子 strength 强度 ductility 延展性 conductor 导体 insulator 绝缘体 density 密度 1 softening 软化 decomposition 分解 over time 随着时间的推移 bronze 青铜 earths crust
3、 地壳 第1章 Properties of Materials 材料的性能 chapter 章 mechanical properties 机械性能 plasticity塑性 hardness硬度 brinell hardness 布氏硬度 rockwell hardness 洛氏硬度 vickers hardness 维氏硬度 impact toughness冲击韧性 fatigue ftig 疲劳 tensile tensal testing 拉伸试验 specimen试样 stress应力 strain应变 stress-strain curve应力-应变曲线 mild steel低碳钢
4、 elastic deformation 弹性变形 application 应用 hooks law 胡克定律 elastic modulus 弹性模量,杨氏模量plastic deformation 塑性变形 yield 屈服 yield strength屈服强度 offset 偏移;平移 offset yield stress条件屈服应力 2 strain strengthening 应变强化 ultimate tensile strength . 抗拉强度 brittle 脆性 percent elongation 伸长率 percent reduction in area 断面收缩率
5、indenter 硬度计压头 impress 压痕 tungsten 钨 carbide 碳化物 fracture 断裂 ductile 延展性 transition 转变 ductile-to-brittle transition 韧脆转变,韧性向脆性转变 fatigue strength 疲劳强度 stiffness刚度 第2章 Crystal Structures of Metals and crystal 金属的晶体结构与结晶 crystal structures晶体结构 defects缺陷 imperfection 缺陷 crystal 晶体 crystalline solids 晶
6、体 amorphous solids 非晶体 long-range order 长程有序 space lattice 晶格 interstitial solid solution 间隙固溶体 substitutional solid solution置换固溶体 unit cells 晶胞 lattice constants 晶格常数 coordination number 配位数 3 atomic packing factor (apf) 致密度 face-centered cubic 面心立方 body-centered cubic 体心立方 hexagonal close-packed c
7、rystals 密排六方晶体 crystal orientation 晶向 crystallographic direction indices 晶向指数 coordinate 坐标 miller indices 密勒指数crystallographic planes 晶面 crystalline imperfections 晶体缺陷 point defects 点缺陷 linear defects 线缺陷 planar defects 面缺陷 vacancies 空位 interstitial atoms 间隙原子 dislocation 位错 edge dislocation 刃型位错 f
8、ree surface in crystal 晶体表面 grain boundaries of crystals 晶界 surface tension 表面张力 metallurgy 冶金 rare-earth metals 稀土金属 precipitation 析出 heat treatment 热处理 substance 物质 ferritic steels 铁素体钢 crystal structures 晶体结构 categorize 分类 atom 原子 4 第3章 Phase Equilibrium and Phase Diagrams 相平衡和相图 solidification 凝
9、固 phase diagram 相图 the iron-iron carbide (fe-fe3c) phase diagram 铁渗碳体相图 supercooling 过冷 supercooling degree 过冷度 homogeneous nucleation 均质形核 heterogeneous nucleation 非均质形核 critical size 临界尺寸 nucleus 晶核 embryo 晶坯 grain 晶粒 polycrystalline 多晶体 allotropy 同素异晶 critical point 临界点 liquidus 液相线 solidus 固相线 b
10、inary isomorphous diagram 二元匀晶相图 cooling curve 冷却曲线 equiaxed grains 等轴晶 columnar grains 柱状晶 ferrite 铁素体 austenite 奥氏体 cementite 渗碳体 equilibrium diagram 平衡相图 pure iron 纯铁 eutectoid steel 共析钢 hypoeutectoid steel 亚共析钢 hypereutectoid steel 过共析钢 5 pearlite 珠光体 ledeburite 高温莱氏体 transformed ledeburite 变态莱氏
11、体,低温莱氏体 liquidus line 液相线 solidus line 固相线 peritectic line 包晶线 eutectoid line 共析线 carbon steels 碳钢 cast iron 铸铁 hypoeutectic cast irons 亚共晶白口铸铁 eutectic cast iron 共晶白口铸铁 hypereutectic cast irons 过共晶白口铸铁 surface fine grain zone 表面细晶区 chill zone 激冷区 equiaxed grains 等轴晶 columnar zone 柱状晶区 columnar grai
12、ns 柱状晶 central equiaxed zone 中心等轴晶区 cast ingot 铸锭 第4章 Plastic Deformation and Recrystallization of Metals金属的塑性变形与再结晶 plastic deformation 塑性变形 recrystallization 再结晶 recovery 回复 deformation 变形 plastic deformation 塑性变形 slip 滑移 twinning 孪生 slip plane 滑移面 6 shear band 剪切带 slip system 滑移系 close packed pla
13、ne 密排面 close packed direction 密排方向 fine-grain strengthening 细晶强化 rolling 轧制 deformation texture 变形织构 preferred orientations 择优取向 stress-relief annealing 去应力退火 cold working 冷加工 hot working 热加工 flow lines 轧制流线、锻造流线、流纹 nonmetal inclusion 非金属夹杂物 第5章 Heat Treatment of Plain-Carbon steel 碳钢的热处理 isothermal
14、等温的 continuous-cooling transformation 连续冷却转变 annealing 退火 normalizing 正火 quenching 淬火 tempering 回火 heat treatment 热处理 overall heat treatment 整体热处理 surface heat treatment 表面热处理 surface quench 表面淬火 flame quench 火焰淬火 sensing quench 感应淬火 chemical heat treatment 化学热处理 cementation 渗碳 nitriding 渗氮 7 nitroc
15、arburizing 碳氮共渗 luminium 铝 chromium krumim铬, molybdenum mlibdinm钼, vanadium vneidim钒 tungsten 钨. low-alloy steels 低合金钢 austenitizing :stntaizi 奥氏体化 supercooled austenite 过冷奥氏体 isothermal transformation diagram (it) 等温转变曲线 pearlite 珠光体 sorbite s:bait 索氏体 troostite tru:stait 托氏体 bainite beinait 贝氏体 up
16、per bainite 上贝氏体 lower bainite 下贝氏体 continuous-cooling transformation 连续冷却转变 cct diagram连续冷却曲线 ttt diagram 等温冷却曲线 martensite 马氏体 secondary troostite 回火托氏体 solid solution固溶体 solute溶质 solvent溶剂 melting-point 熔点 interstitial solid solution间隙固溶体 diffusion扩散 vacancies空位 interstitial atoms间隙原子 8 sub-grain
17、 boundary亚晶界 binary alloy二元合金 grain refiment晶粒细化 solidus固相线 solvus固溶线 Stress Relief Anneal 去应力退火 第7章 Cast Irons 铸 铁 white cast iron白口铸铁 gray cast iron 灰口铸铁 Ductile Cast Irons 球墨铸铁 Malleable iron 可锻铸铁 blackheart cast irons 黑心铸铁 carbon steel碳素钢 mild steel低碳钢 medium carbon steel中碳钢 sulphor硫 phosphor磷 第
18、8章 Nonferrous Metal Material有色金属材料 nonferrous metal material 有色金属 wrought alloys形变合金 cast alloys铸造合金 sand casting 砂型铸造 permanent-mold casting 金属型铸造 die casting 压力铸造 precipitation strengthening (hardening) 析出强化,沉淀强化 natural aging 自然时效 artificial aging 人工时效 9 2. Multiple choice 1. The ratio of stress
19、to strain, /, in the linear elastic region is called a . (a) Youngs Modulus (b) tensile strength (c) hardness (d) elastic 2. Atomic arrangements in crystalline solids can he described by referring the atoms to the points of intersection of a network of lines in three dimensions. Such a network is ca
20、lled b . (a) Youngs Modulus (b) Space Lattice (c) Unit Cells (d) Lattice Constants 3. An atom lies at each corner of the cube and one in the center. This is the a . (a) body-centered cubic structure (b) face-centered cubic structure (c) Hexagonal Close-Packed Crystals 4. This structure has an atom a
21、t each corner plus an addition atom at the center of each face. This is b . (a) body-centered cubic structure (b) face-centered cubic structure (c) Hexagonal Close-Packed Crystals 5. There are six atoms at the corners of the top and bottom planes, each shared by six unit cells; one atom in the cente
22、r of the upper and lower basal planes, each shared by two cells. This is the c . (a) body-centered cubic structure (b) face-centered cubic structure (c) Hexagonal Close-Packed Crystals 6. The a are the vector components of the direction resolved along each of the coordinate axes and reduced to the s
23、mallest integers. (a) crystallographic direction indices (b) Lattice Constants (c) Space Latticesurface tension 7. A certain positions, there are missing atoms ( a normally occupied position is vacant ) while in other places atoms are in “wrong” positions (atoms are located in normally unoccupied po
24、sitions). The former are called b and the latter are termed a . (a) interstitials (b) vacancies (c) dislocation (d) imperfection 10 8. Why are free surface considered to be defects? Surface atoms have fewer nearest neighbors, and therefore higher energy, than atoms inside the crystal. The extra ener
25、gy associated with the free surface is called d (a) interstitials (b) grain boundary (c) dislocation (d) surface tension 9. Most techniques for the production of crystalline materials result in the formation of large numbers of small, randomly oriented crystals, called b . The boundary between adjac
26、ent crystals is called a c (a) phase (b) grain (c) grain boundary (d) phase boundary 10. c in a liquid melt occurs when the metal itself provides the atoms needed to form a nuclei. (a) phase boundary (b) nucleation (c) homogeneous nucleation (d) phase boundary 11. Solidified metal containing many cr
27、ystals is said to be a , . (a) polycrystalline (b) polymer (c) grain (d) grain boundary 12. If the nucleation and growth conditions in the liquid metal during solidification are such that the crystals can grow about equally in all directions, b will be produced. (a) columnar grains (b) equiaxed grai
28、ns (c) grain (d) grain boundary 13. The eutectoid mixture of fine plate-like lamellar mixture of ferrite and cementite is called b . (a) cementite (b) pearlite (c) ledeburite (d) austenite 14. The eutectic mixture of austenite and cementite is called d . (a) cementite (b) pearlite (c) ferrite (d) le
29、deburite 15. In the Fe-Fe3C system, there is a eutectoid point at approximately 0.77wt% C, 727C. The phase just above the eutectoid temperature for plain carbon steels is known as d . (a) cementite (b) pearlite (c) ledeburite (d) austenite 16. When a sufficient load is applied to a metal or other st
30、ructural material, it will cause the material to change shape. This change in shape is called b . (a) slip (b) deformation (c) twinning (d) plastic deformation 11 17. When the stress is sufficient to permanently deform the metal, it is called d . (a) slip (b) deformation (c) twinning (d) plastic def
31、ormation 18Process which an metal material is heated to a suitable temperature and held at this temperature for a sufficient length of time, finally cooled in a particular manner to alter its internal structure for obtaining desired degree of physical and mechanical properties. It is called b (a) qu
32、enching (b) heat treatment (c) Continuous-Cooling Transformation (d) Isothermal Transformation 19. If a sample of a 0.8% plain carbon steel is heated to about 750 and held for a sufficient time, its structure will become homogeneous austenite. This process is called d . (a) quenching (b) heat treatm
33、ent (c) Annealing (d) austenitizing 20. The reheating treatment that softens a cold-worked metal is called b (a) quenching (b) Annealing (c) Normalizing (d) Tempering 21. C is a heat treatment in which the steel is heated in the austenitic region and then cooled in still air. (a) quenching (b) annea
34、ling (c) normalizing (d) tempering 22. D is the process below the eutectoid transformation of heating a martensitic steel temperature to make it softer and more ductile. (a) quenching (b) Annealing (c) Normalizing (d) Tempering 23. Aging the alloy at room temperature is called a . a) natural aging b
35、) artificial aging 24. Aging at elevated temperatures is called b . a) natural aging b) artificial aging 3. 短句翻译 1. Solids may be categorized broadly into crystalline and amorphous solids. 12 2. The formation of stable nuclei in the melt (nucleation) 3. The growth of nuclei into crystals 4. The form
36、ation of a grain structure 5. The solidification of metals and alloys is an important industrial process since most metals are melted and then cast into a semifinished or finished shape. 6. Columnar grains are long, thin, coarse grains created when a metal solidifies rather slowly in the presence of
37、 a steep temperature gradient. 7. Ferrite is the interstitial solid solution of carbon in iron. 8. Austenite is the interstitial solid solution of carbon in iron. 9. Plastic deformation is due to the motion of a large number of dislocations. 10. Dislocations allow deformation at much lower stress th
38、an in a perfect crystal. 11. Each heat treatment process needs heating, preserving and cooling. 12. The heating speed, highest heating temperature, preserving time and cooling speed are the four factors of heat treatment process. 13. Flame hardening consists of hardening the surface of the component
39、 by heating it above the transformation temperature using a high temperature flame or high velocity combustion products and then quenching it in water or oil. 14. Plain-carbon steels have low corrosion and oxidation resistance. 15. Medium-carbon plain-carbon steels must be quenched rapidly to obtain
40、 a fully martensitic structure. 16. Plain-carbon steels have poor impact resistance at low temperatures. 17. In this book low-alloy steels containing from about 1 to 4 percent of alloying elements will be considered alloy steels. 18. The way in which alloy elements distribute themselves in carbon st
41、eels depends primarily on the compound- and carbide-forming tendencies of each element. 19. The carbide-forming elements such as tungsten, molybdenum, and titanium raise the eutectoid temperature of the Fe-Fe3C phase diagram to higher values and reduce the austenitic phase field. These elements are
42、called ferrite-stabilizing elements. 13 20. Cast irons have often significant amounts of silicon, as well as smaller amounts of other elements. 21. The range of carbon content gives cast irons a high fluidity. Also the materials when solidifying show no significant volume contraction. 22. However, i
43、f there is very slow cooling, the Cm is not stable and graphite flakes can form. 23. Moderate and slow cooling rate favor the formation of graphite. The solidification rate also affects the type of matrix formed in gray cast iron. 24. Moderate cooling rates favor the formation of a pearlitic matrix,
44、 whereas slow cooling rates favor a ferritic matrix. 25. Gray cast iron is formed when the carbon in the alloy exceeds the amount that can dissolve in the austenite and precipitates as graphite flakes. 26. Since silicon is a graphite stabilizing element in cast irons, a relatively high silicon conte
45、nt is used to promote the formation of graphite. 27. Cast irons have relatively low impact resistance and ductility, and this limits their use for some applications. 28. The wide industrial use of cast irons is due mainly to their comparatively low cost and versatile engineering properties. 29. Anne
46、aling is used with grey cast iron to provide optimum machinability and remove stresses. 30. To produce a fully ferritic matrix in a gray iron, the iron is usually annealed to allow the carbon remaining in the matrix to deposit on the graphite flakes, leaving the matrix completely ferritic. 31. In the blackheart process, white iron casting in a non-oxidising atmosphere to 900 and soaked at that temperature for two days or more. 32. In permanent-mold casting the molten metal is poured into a permanent metal mold un