《北师大版数学九年级下33垂径定理ppt课件.ppt》由会员分享,可在线阅读,更多相关《北师大版数学九年级下33垂径定理ppt课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、3.3 垂径定理,阳山县青莲中学数学组,九年级数学(下)第三章 圆,1.圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,2.圆也是中心对称图形.,它的对称中心就是圆心.,知识回顾,4.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。,5.定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。,3.顶点在圆心的角叫做圆心角.,AM=BM,垂径定理,AB是O的一条弦.作直径CD,使CDAB,垂足为M.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,下图是轴对称图形吗?如果是,其对称轴是什么?,小明
2、发现图中有:,由 CD是直径,CDAB,垂直于弦的直径平分这条弦,并且平分弦所对的弧。,垂径定理,证明:连接OA,OB,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,RtOAMRtOBM,AM=BM,AOC=BOC,AOD=180AOC,BOD=180BOC,AOD=BOD,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧,AM=BM,由 CD是直径,CDAB,垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的弧。,CD是直径,CDAB,AB是弦,AM=BM,ADBD,ACBC,CDAB,垂径定理的逆定理,AB是O的一条弦,且AM=BM.,你能发现图中有哪些等量关
3、系?与同伴说说你的想法和理由.,下图是轴对称图形吗?如果是,其对称轴是什么?,由 CD是直径,AM=BM,平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.,CD是直径,AB是弦,并且CD平分AB,CDAB,ADBD,ACBC,垂径定理的应用,例1:如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,讨论,(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对优弧(5)平分弦所对的劣弧,(3)(1),(2)(4)(5),(2)(3),(1)(4)(5),(1
4、)(4),(3)(2)(5),(1)(5),(3)(4)(2),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分一条弧的直径,垂直平分弧所对的弦,并且平分弦所对的另一条弧,命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,CD是直径,AB是弦,并且CD平分AB,CDAB,ADBD,ACBC,命题(2):弦的垂直平分线经过圆心,并且平分弦所对的两条弧,AB是弦,CD平分AB,CD AB,CD是直径,ADBD,ACBC,命题(3):平分一条弧的直径,垂直平分弧所对的弦,并且平分弦所对的另一条弧,CD是直
5、径,AB是弦,并且ADBD(ACBC)CD平分AB,ACBC(ADBD)CD AB,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,推论,(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对 的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分一条弧的直径,垂直平分弧所对的弦,并且平分弦所对的另一条弧,垂径定理,记忆,弧的中点到弦的距离,叫弓形高或弓高,如图线段CM是弓高,圆心到弦的距离,叫弦心距。如图线段OM是O到弦AB的弦心距。,赵州石拱桥,1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高(弧的
6、中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).,随堂练习1,赵州石拱桥,解:如图,用 表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.由题设,在RtOAD中,由勾股定理,得,解得 R27.9(m).,答:赵州石拱桥的桥拱半径约为27.9m.,随堂练习1,如果圆的两条弦平行,那么这两条弦所夹的弧相等吗?为什么?,E,F,M,N,随堂练习2,还有其他情况吗?,如图,已知O的半径为30mm,弦AB=36mm.则点O到AB的距离及 OAB的余弦值。,知识技能2,C,如图,
7、两个圆都是以O为圆心,小圆的弦CD与大圆的弦AB在同一条直线上,你认为AC与BD的大小有什么关系?为什么?,理由:过O作OEAB于E,,解后指出:在圆中,解有关弦的问题时,常常需要作出“垂直于弦的直径”作为辅助线,实际上,往往只需从圆心作弦的垂线段。,则 AE=BE,CE=DE,AECE=BEDE,即AC=BD,数学理解3,解:AC=BD,O,如图,M为O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.,数学理解4,A,B,判断,(1)垂直于弦的直线平分弦,并且平分弦所对的弧.(),(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心.(),(3)圆的不与直径垂直的弦必不被这条直径平分.(),(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧(),(5)圆内两条非直径的弦不能互相平分(),挑战自我,(6)平分弦的直径,平分这条弦所对的弧(),(7)平分弦的直线,必定过圆心(),(8)一条直线平分弦(这条弦不是直径),那么这条直线垂直这条弦(),(9)弦的垂直平分线一定是圆的直径(),(10)平分弧的直线,平分这条弧所对的 弦(),(11)弦垂直于直径,这条直径就被弦平分(),这节课有何收获?!,你,