《数列的概念与简单表示法(一)课件.ppt》由会员分享,可在线阅读,更多相关《数列的概念与简单表示法(一)课件.ppt(23页珍藏版)》请在三一办公上搜索。
1、2.1.1 数列的概念与简单表示法,(1)人们在1740年发现了一颗彗星,并推算出这颗彗星每隔83年出现一次,那么从发现那次算起,这颗彗星出现的年份依次为,(2)“一尺之棰,日取其半,万世不竭”的意思为:一尺长的木棒,每日取其一半,永远也取不完。如果将“一尺之棰”视为一份,那么每日剩下的部分依次为,1、考察下面的问题,1740,1823,1960,1989,2072,,问题创设,(1)三角形数,(2)正方形数,2、观察以下2个例子:,1,3,6,10,1,4,9,16,问题创设,一、数列的概念:,按一定次序排列的一列数叫做数列,思考1:拿“1,2,3”这三个数来排,能排出几个数列?,例如:三角
2、形数 1,3,6,10,正方形数 1,4,9,16,,1,2,3 2,1,3 3,1,21,3,2 2,3,1 3,2,1,注意:每个数列中的数都有特定的顺序,但不一定要有 特殊的规律.,一、数列的概念:,按一定次序排列的一列数叫做数列,注:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,第n项.,我们常把数列的一般形式写成 a1,a2,a3,an,.(nN*)简记作an。,例如:若用an来表示“2,1,3”这个数列,则a2=_;,1,思考2:能不能把数列“2,1,3”记为2,1,3?,不行,2,1,3是一个集合,集合中的元素是没有顺序的,一、数列的概念:,
3、按一定次序排列的一列数叫做数列,注:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,第n项.,我们常把数列的一般形式写成 a1,a2,a3,an,.(nN*)简记作an。,思考3:an 与an的意思一样吗?an表示一个数列:a1,a2,a3,an,.an表示数列an中的第n项,各项都相等的数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列,二、数列的分类:1、以项数来分类:(1)有穷数列:(2)无穷数列:2、以各项的大小关系来分类:(1)递增数列:(2)递减数列:(3)常 数 列:(4)摆动数列:,项数有限的数列项数无限的数列,对任意nN*,总
4、有an+1an(或an+1-an0),对任意nN*,总有an+1an(或an+1-an0),从第2项起,每一项都大于它的前一项的数列,从第2项起,每一项都小于它的前一项的数列,思考:观察下列数列的特点,用适当的数填空,并猜想这些数列的第n项an是什么?(1)1,9,16,25,49,;(2)2,4,16,32,128,;(3)1,-1,1,1,-1,-1,;,4,36,8,64,-1,1,三、数列的通项公式:,如果数列an的第n项an与序号n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式,简称通项。,例如:an=n2 就是数列1,4,9,16,的一个通项公式,注意:通项公
5、式的主要作用是“知序号可求项”如:数列n2的第11项是_ 一些数列的通项公式不是唯一的;如:数列1,-1,1,-1,不是每一个数列都能写出它的通项公式。如:1,24,8,3,19,121,例1、试写出下面数列的一个通项公式,使它的前4项分别是下列各数:,变题:4,6,8,10,变题:-3,-1,1,3,(1)2,4,6,8;(2)1,3,5,7;,an=2n,an=2n+2,an=2n-1,an=2n-5,变题:5,55,555,5555,(4)9,99,999,9999;,(1)-2,2,-2,2;(2)(3)2,0,2,0;,拓展、试写出下面数列的一个通项公式,使它的前4项分别是下列各数:
6、,练习:课本P31第1,4题,小结,观察法求通项公式:,(1)常见数列:正整数列;奇数列,偶数列,平方数列,三角形数列,,(2)分数列:观察分子、分母的特点。,(3)指数数列:观察底数、指数的特点。,(4)各项符号一正一负:,例1、已知数列an的通项公式是an=-n2+4n-1,(1)写出这个数列的前4项;(2)你能判断出这个数列哪一项最大吗?为什么?,注意:an=-n2+4n-1可看成以n为自变量的一个函数,(2)an=-n2+4n-1=-(n-2)2+3 当n=2时,an取到最大值3,思考:上述数列的通项an=-n2+4n-1与函数f(x)=-x2+4x-1有什么不同?,(3)-13是这个
7、数列中的项吗?,递增数列:递减数列:,对任意nN*,总有an+1an(或an+1-an0),对任意nN*,总有an+1an(或an+1-an0),例2、已知数列an的通项公式为an=n2+n,其中nN*,求证an是个递增数列。,证明:对任意nN*,an+1-an=(n+1)2+(n+1)-(n2+n)=2n+20 an是个递增数列,五、数列与函数的关系:,从函数的观点看,数列可以看成以正整数集N*(或它的有限子集1,2,n)为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.,数列的其他表示方法:,如:数列2,4,6,2n,,列表法,图象法,例4、下图中的三
8、角形称为谢宾斯基三角形,在下图4个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图象.,(1),(2),(3),(4),思考:如果一个数列an的首项a1=1,从第2项起每一项都等于它的前一项的2倍再加1,即 an=2an-1+1(n2)则该数列的第5项是什么?,已知数列an的第1项(或前几项),且任意一项an与前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式,练习:试写出数列1,3,6,10,的一个递推公式。,解:a1=1,练习:写出下列数列an的前5项(1)a1=5,an=an-1+3(n2);(2)a1=2,an=2an-1(n2);,思考:你能否利用上面两题的条件求出数列an的 通项公式?,(1)5,8,11,14,17(2)2,4,8,16,32,二.数列的分类:1.以项数来分类:(1)有穷数列:(2)无穷数列:2.以各项的大小关系来分类:(1)递增数列:(2)递减数列:(3)常 数 列:(4)摆动数列:,项数有限的数列项数无限的数列,从第2项起,每一项都大于它的前一项的数列从第2项起,每一项都小于它的前一项的数列各项都相等的数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列,(an+1an,nN*),(an+1an,nN*),(an+1=an,nN*),