毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc

上传人:laozhun 文档编号:3924791 上传时间:2023-03-28 格式:DOC 页数:7 大小:464KB
返回 下载 相关 举报
毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc_第1页
第1页 / 共7页
毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc_第2页
第2页 / 共7页
毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc_第3页
第3页 / 共7页
毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc_第4页
第4页 / 共7页
毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc》由会员分享,可在线阅读,更多相关《毕业论文(设计)基于CT 扫描和激光烧结技术的上颌骨及牙列三维仿真与修复07649.doc(7页珍藏版)》请在三一办公上搜索。

1、基于CT扫描和激光烧结技术的上颌骨及牙列三维仿真与修复* 国家自然科学基金资助项目(10572160)、教育部高等学校骨干教师资助计划、重庆市科委资助作者单位:400030 重庆 重庆大学力学系;颜功兴:博士、高级工程师 yaaangx. TEL:13062353930 颜功兴 刘占芳 冯小伟【摘要】 目的 探讨根据不同的患者,不同的设计方案,生成个性化的缺损模型、修复体模型,建立颅骨上颌骨及牙列三维仿真,为上颌骨的修复提供标准数学模型和实体模型。方法 选择一具颅骨标本作为建模素材,通过螺旋CT扫描技术及三维影像技术完成初步重建,建立上颌骨及牙列的三维有限元模型,在此基础上运用快速原型技术得到

2、修复体进行颌面修复。结果 获得了形态细致逼真的上颌骨及牙列三维重建生物力学模型和修复体,修复后形态与功能得以很好重建。结论 综合运用CT扫描、三维建模、快速成型等技术可以获得不同个体的上颌骨及牙列三维仿真模型和逼真的修复体,病人外形美观,成本费用低,术后并发症少,为临床探索上颌骨及牙列的修复设计了一套完整思路。【关键词】CT扫描;有限元;RP技术; Construction of Three Dimensional FiniteElement Model of Skull Maxilla and DentitionLiu Zhanfang Yangongxing Fengxiaowei 【Ab

3、stract】Objective Based on distinct patients and different design project, individual harmed model and restoration model can be built. And according to the 3D simulation of maxilla、skull and dentition, standard mathematical model and entity model for maxilla repair can be provided. Methods On the bas

4、is of scaned skull image, CT image reconstruction technique and 3-D FEM were used, and the maxillofacial repair by restoration with rapid prototyping production technique. Results A good 3D FE model of normal maxillary and dentition and restoration were constructed. And configuration and function of

5、 maxillofacial were rebuilt after repair. Conclusion 3D FE model of normal maxillary and dentition and restoration by CT image reconstruction、3D FEM and rapid prototyping production technique can be achieved with pleasing in appearance on patients、low cost and less post-operative complications. And

6、a complete idea for maxilla and dentition repair can be achieved.【Key words】 CT; FEA;RP;因创伤及手术等因素造成颅骨缺损是外科常见病之一,颌骨缺损常有颌骨移位、咬合错乱、牙列缺失等,影响患者的口颌系统功能,且患者对颅骨修补术后头颅形状的满意程度直接影响其今后社交生活的心态和生活质量。目前,临床上虽可通过多种方法恢复面部形态,但采用现有的修复方法均不能达到理想的个体颌骨形态1,只能大致恢复面部形貌,特别是不能为牙列缺失修复创造必要的条件,直接影响口腔功能的重建。快速原型技术(又称快速成型技术,简称RP或 RPM

7、技术 Rapid Protot ypingPapidp mtotyping Manufacturing)的激光烧结技术,是国外80年代后期发展起来的一门新兴技术。它是将计算机内的三维实体模型进行分层切片得到各层截面的轮廓,计算机又将此信息控制激光器(或喷嘴)有选择性地切割一层又一层的片状材料形成一系列具有一个微小厚度的片状实体,再采用粘接、聚合、熔结、焊接或化学反应等手段使其逐层堆积成一体制出所设计的三维模型或样件2。本研究通过螺旋CT 扫描技术及三维影像技术完成初步重建,并在此基础上运用Abaqus软件建立了形态逼真的上颌骨及牙列三维有限元模型,再利用快速成型技术的快速性、准确性以及擅长制造

8、复杂实体的特点,将其运用于上颌骨及牙列缺损的整复,采用个体化设计和个体化制造的理念和手段,在精确整复缺损、恢复外形的基础上进行修复,探索一种既能获得满意的面部外形,又能恢复功能的颌面缺损修复手段,为上颌骨及牙列缺损形态与功能的仿真修复提供一条新的思路,为解决颌骨畸形、缺损整复中的难题奠定基础。1 材料与方法1.1 建模素材:经防腐处理的头颅标本一例,其牙列完整,牙弓形态基本对称,颌关系正常。1.2 头面部CT扫描:采用Philip CT 扫描机对头颅标本进行连续螺旋扫描及三维影像重建。螺旋扫描参数如下:球管电流与电压150 mA/ 120kv。扫描范围自颅骨顶始,至下颌骨下缘止,层厚1mm,最

9、终得到224 张断层扫描图像并传入重建工作站,以DICOM格式存储。1.3 三维影像重建:在电脑上通过Mimics软件读取数据,图1和图2即为颅骨CT断层扫描图像。选择上颌骨及牙列所在的层面为建模范围,利用阈值设定和区域生长功能,选择合适的参数对上颌骨及其牙列分别进行三维重建,得到的模型如图3、图4所示。将重建模型中的上颌骨和牙列分别以STL文件格式输出到逆向软件中,去除掉模型的噪点,曲面重构,利用点云数据运算出无接缝的多边形,再以IGES格式输出。 图1颅骨螺旋CT扫描正面观 图2颅骨螺旋CT扫描侧面观 图3 Mimics中建立的上颌骨及牙列模型正面观 图4 Mimics中建立的上颌骨及牙列

10、模型侧面观1.4 有限元模型1.4.1 导入模型:在Abaqus软件中分别读取IGES格式的上颌骨及牙列模型数据,然后通过布尔运算把上颌骨和牙列组集到一起,定义牙齿和颌骨之间没有相对滑动。为了简化模型,去除模型中应力分布影响较弱的部分(如鼻梁骨),得到的模型如图5、图6所示。 图5 上颌骨及牙列螺旋CT三维重建影像正面观 图6上颌骨及牙列螺旋CT三维重建影像侧面观1.4.2 材料力学参数:将材料考虑为连续、均匀、各向同性的线弹性材料,材料变形为小变形,受力时模型各截面均不产生相对滑动,其材料参数见附表:表1 有关材料力学参数材料类型弹性模量E(GPa)泊松比骨皮质13.70.3骨松质1.370

11、.3牙齿20.70.31.4.3 网格划分:由于模型关于正中矢状平面对称,为了减少计算工作量,网格划分都只对右侧上颌骨和牙列进行,如图7、图8所示。采用四面体实体单元对模型划分网格,颌骨部分网格划的比较稀疏,牙齿等局部细微的地方对网格进行加密,以保证模型的精度。模型总节点总数为71734,单元总数为362914。 图7 已划网格的右侧上颌骨 图8 已划网格的右侧上颌骨 图9 边界条件示意图及牙列模型正面观 及牙列模型侧面观 1.4.4 边界条件:由圣维南原理可知,受力区域只在载荷附近的区域内,所以在实际计算中为减小计算量只取上颌骨的一部分,上颌骨顶部完全固定约束,如图9所示:1.5 假体的制作

12、:对切除部分上颌骨及牙列的患者,按照手术设计在数字模型上切除病变区上颌骨及牙列,获得缺损部分的模型。调整点云数位置和角度,通过数据的镜像对称形成缺损区的资料,再进行修复体的曲面设计与修饰,再将STL格式文件数据传送到制作中心(重庆市假肢厂)进行修复体的实体化,以获得树脂模型,最后埋铸造形成钛修复体并进行后处理(含修复体的洗、钝化和义齿固位装置的制备)。1.6 修复体的植入全麻下制备受床以容纳修复体。支架内用碎松质髂骨充填,牙槽嵴面由薄层皮骨覆盖并用修复体固位。健侧需作颌问结扎以防止合错乱,检查健侧咬合关系无误后,用双皮质螺钉将伸板与下颌骨残端固定。术后常规应用抗生素预防染。2 结果2.1 获得

13、了良好的上颌骨及牙列三维仿真模型该模型形态细致逼真,模型形态与实体标本一致,可以被任意旋转并从不同角度观察,能得到上颌骨及牙列骨骼鲜明、直观、整体的印象。模型可编辑性强,可进行任意分割、复制和存储。模型可用于口腔修复学中牙列缺损和修复的病例模型,同时也可分析口腔正畸学中微植体植入后上颌骨的生物力学响应。2.2 获得了逼真的修复体 根据上颌骨及牙列三维有限元模型,再利用快速成型技术的快速性、准确性以及擅长制造复杂实体的特点,将其运用于上颌骨及牙列缺损的整复,获得了逼真的修复体。2.3 病人外形美观,成本费用低,术后并发症少面部外形满意,咬合关系良好。重庆市口腔医院对8名上颌及牙列患者在术后随访(

14、随访3968个月,平均48个月),查x线片:头颅后前位、颅基位及全口曲面断层示修复体固定良好、无松脱,外形对称,植骨块致密坚种,植体结合紧密、固无松动。3 讨论有限元方法由于其独特的优势,已在口腔生物力学研究中得到了广泛的发展和应用。它与传统实验性应力分析相比,可提供模型任何部位的应力和位移,并可根据需要修改力学参数,在维持原模型几何形状不变的情况下,对各种应力的大小和分布进行对比分析。由于使用了先进的电子计算机,庞大的数据处理则变得较为容易。这种方法高效、精确、可信度高、成本低,已成为结构优化设计、材料非线性和几何非线性分析的一种实用、有效、方便的应力分析方法。本文探索出了一条数字化程度高、

15、适用于活体的三维有限元方法。有限元模型首先要求模型和原物的几何相似性强,在CT扫描时,如果断层越密,其几何相似性越好,模型的几何形态越接近实物。人体头颌骨牙列形状复杂,具有空间三维曲面、形状小且多处为混合曲面以及曲面形状变化多样等特点。能否获取准确的数据决定了三维有限元模型的几何相似性。本文采用CT技术获取各层的解剖轮廓图,可以实现间隔较密地平行扫描,每层的解剖结构清晰可见,能较真实地代表原物。模型具有可编辑性,可进行任意分割、旋转,在三维立体空间可以从研究者需要的任何角度进行观察4,5。同时模型引入了上颌骨及牙列的力学材料常数,使建立的模型与实体相比具有良好的生物力学相似性。上颌及牙列缺损是

16、口腔修复的常见疾病, 其类型繁多,如果针对每一个病例进行个体化建模和生物力学分析,再制定修复设计的最佳方案,其成本高,效率低,在实际工作中不够现实。本文在建立上颌骨及牙列模型的基础上提出 “模块化”的概念,使模型具有“开放性”及“可编辑性”,可以根据不同的患者,不同的设计方案,生成个性化的缺损模型、修复体模型,节省了重复建模所需要的时间和精力,获得了与患者个体较为接近的模型6,7,8,在口腔修复和正畸教学、科研、临床上都有较大的实用价值。快速原型技术应用在颅颌面修复方面 ,主要是因为颌面部器官多呈对称性,对于一侧器官缺损通过对侧数据来对缺损进行重建,能保证面部双对称性。对于跨过中线区的缺损,可

17、以通过剩余下颌骨的外形曲线计算出颌骨整体的曲线,进一步恢复上颌骨的形态。 还可以对模型进行快速、准确的测量,找出设计中的不足进行修改,特别是对上颌骨重建后修复体位置及方向的确定可以有一个直观概念。患者在颅颌面外科手术前用RP模型来诊断和制订手术计划,统计结果显示在各个方面都有较大的提高2。诊断的准确率由影像学诊断的65.5提高到生物模型的95.2,测量的准确性从影像学的44测量误差降到有生物模型的8,手术时间也大大减少。在骨肿瘤切除、各种畸形矫正中,快速成型利用人体对称的原理进行重建假体个体化制造,加之其生产周期短、可通过互联网实现远程制造的特点,显出了无法比拟的优势。 本研究采用上述方法进行

18、上颌骨及牙列的功能重建,从初步临床效果看,在形态和功能重建两方面都具有很大的优势,特别是在手术中省去了修复体塑形的过程,大大节省了手术时间。本项研究对模型进行了假设和简化,其中有些与实际情况不完全相符,如在提取上颌骨和牙列的过程中有手工操作等。因此,本项研究建立的上颌骨及牙列有限元模型和修复体再优化还有待进一步研究。同时,如果能应用生物活性材料制作修复体,并结合组织工程方法减少甚至不需自体取骨,将是今后研究的方向。4 参考文献1汤炜,田卫东等全面部骨折手术治疗的临床研究,中华创伤杂志,2005,21(12)12:881-8832郭建,朱飞.基于医用CT成像技术的快速原形制造方法,激光杂志,20

19、08,29(1):70-71待添加的隐藏文字内容33李玲,薛淼.上下颌骨及牙列三维有限元模型的建立,口腔材料器械杂志,2002,12(3): 117-1214赵志河,房兵等.颅面骨三维有限元模型的建立,华西口腔医学杂志, 1994, 12(4): 298-3005张彤,刘洪臣.上颌骨复合体三维有限元模型的建立,中华口腔医学杂志,2000, 35(5): 374-3776熊亚茸,陈新等.种植体在上颌骨复合体前、中、后应力的比较,空军总医院学报,2002, 18(2):69-727Margulies SS, Thibault KL. Infant skull and suture properti

20、es: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng, 2000, 122: 364-371.8Kumaresan S, Radhakrishnan S. Importance of partitioning membranes of the brain and the influence of the neck in head injury modeling. Med Biol Eng Comput, 1996, 34:27-32.9Voo K, Kumaresan

21、S, Pintar FA, et al. Finite-element models of the human head. Med Biol Eng Comput, 1996, 34:375-381.10Ruan JS, Khalil T, King AI. Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng, 1994, 116:44-50.Editors note: Judson Jones is a meteorologist, j

22、ournalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beep

23、s of the worlds first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle progra

24、m I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, Ive still seen many important weather and space events, but right now, if you were sitting next to me, youd hear my foot tapping rapidly under my desk. Im anxious for the nex

25、t one: a space capsule hanging from a crane in the New Mexico desert.Its like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jum

26、p from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line up in a vertical straight line we would be go for launch.I feel this mission

27、 was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. Howeve

28、r, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How

29、claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and capcom (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mis

30、sion aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, wil

31、l move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stra

32、tosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, Fearless Felix will unclip. He will roll back the door.Then, I would assume, he will slowly st

33、ep out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, hell be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he i

34、s diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be e

35、nough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes its not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 met

36、ers).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as planned, it wont. Baumgartner still will free fall at a speed that would cause

37、 you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way Id miss this.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号