《基于MATLAB的模糊PID控制器的设计及其实现毕业设计论文.doc》由会员分享,可在线阅读,更多相关《基于MATLAB的模糊PID控制器的设计及其实现毕业设计论文.doc(46页珍藏版)》请在三一办公上搜索。
1、本科毕业论文题 目: 基于MATLAB的模糊PID控制器的设计及其实现_ 院 系: 信息工程学院_ _ 专 业: 电气工程及其自动化_班 级: 电气 0703_ 毕业设计(论文)任务书电气工程及其自动化专业0703班学生毕业设计(论文)题目:基于MATLAB的模糊PID控制器的设计及其实现毕业设计(论文)内容:1. 学习模糊控制理论;2. 学习MATLAB仿真软件;3. 设计fuzzy-PID仿真控制系统毕业设计(论文)专题部分:模糊PID MATLAB仿真控制系统的设计 起止时间:2011年3月-2011年6月指导教师: 签字 年 月 日教研主任: 签字 年 月 日学院院长: 签字 年 月
2、日内容摘要PID(比例 积分 微分)控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的控制系统。而对于一些多变量、非线性、时滞的系统,传统的PID控制器并不能达到预期的效果。随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。而单纯的模糊控制器有其自身的缺陷控制效果很粗糙、控制精度无法达到预期标准。但利用传统的PID控制器和模糊控制器结合形成的模糊自适应的PID控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定相关参数,保证系统工作在最佳状态,实现优良的控制效果。论文介绍了参数自适应模糊PID控制器的设计方
3、法和步骤。并利用MATLAB 中的SIMULINK 和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了对应的仿真数据。关键词: 经典PID控制; 模糊控制; 自适应模糊PID控制器; 参数整定; MATLAB仿真ABSTRACTPID(Proportion Integration Differentiation) control, with lots of advantages including simple structure, good stability and high reliability, is quite suitable to establish especi
4、ally the control system which accurate mathematical model is available and needed. However, taken multivariable, nonlinear and time-lag into consideration, traditional PID controller can not reach the expected effect. Along with the development of Fuzzy Mathematics, control engineers gradually pay m
5、uch attention to the idea of Fuzzy Control, thus promoting the invention of fuzzy controllers. However, simple fuzzy controller has its own defect, where control effect is quite coarse and the control precision can not reach the expected level. Therefore, the Fuzzy Adaptive PID Controller is created
6、 by taking advantage of the superiority of PID Controller and Fuzzy Controller. Taken this controller in use, the corresponding error and its differential error of the control system can be feed backed to the Fuzzy Logic Controller. Moreover, the three parameters of PID Controller is determined onli
7、ne through fuzzification, fuzzy reasoning and defuzzification of the fuzzy system to maintain better working condition than the traditional PID controller. Meanwhile,the design method and general steps are introduced of the Parameter self-setting Fuzzy PID Controller. Eventually, the Fuzzy Inference
8、 Systems Toolbox and SIMULINK toolbox are used to simulate Control System. The results of the simulation show that Self-organizing Fuzzy Control System can get a better effect than the Classical PID controlled evidently.Keywords: Classic PID control; Fuzzy Control; Parameters tuning; the Fuzzy Adapt
9、ive PID Controller; MATLAB simulation目 录 第一章 绪论11.1 课题研究的背景及学术意义11.2 经典PID控制系统的分类与简介21.2.1 P控制21.2.2 PI控制21.2.3 PD控制21.2.4 比例积分微分(PID)控制21.3 模糊逻辑与模糊控制的概念31.3.1 模糊控制相关概念31.3.2 模糊控制的优点41.4 模糊控制技术的应用概况41.5 本文的研究目的和内容5第二章 PID控制62.1 PID的算法和参数62.1.1 位移式PID算法62.1.2 增量式PID算法72.1.3 积分分离PID算法72.1.4 不完全微分PID算法
10、82.2 PID参数对系统控制性能的影响92.2.1 比例系数KP对系统性能的影响92.2.2 积分时间常数Ti对系统性能的影响92.2.3 微分时间常数Td对系统性能的影响92.3 PID控制器的选择与PID参数整定102.3.1 PID控制器的选择102.3.2 PID控制器的参数整定10第三章 模糊控制器及其设计113.1 模糊控制器的基本结构与工作原理113.2 模糊控制器各部分组成113.2.1 模糊化接口113.2.2 知识库123.2.3 模糊推理机123.2.4 解模糊接口123.3模糊推理方式133.3.1 Mamdani模糊模型(迈达尼型)133.3.2 Takagi-Su
11、geno模糊模型(高木-关野)133.4模糊控制器的维数确定143.5 模糊控制器的隶属函数153.6模糊控制器的解模糊过程173.7 模糊PID控制器的工作原理18第四章 模糊PID控制器的设计194.1 模糊PID控制器组织结构和算法的确定194.2 模糊PID控制器模糊部分设计194.2.1 定义输入、输出模糊集并确定个数类别194.2.2 确定输入输出变量的实际论域204.2.3 定义输入、输出的隶属函数204.2.4 确定相关模糊规则并建立模糊控制规则表214.2.5 模糊推理23第五章 模糊PID控制器的MATLAB仿真255.1 模糊控制部分的fuzzy inference sy
12、stem仿真255.1.1 定义输入输出变量并命名255.1.2 编辑隶属函数255.1.3 编辑模糊规则库265.2 对模糊控制器的SIMULINK建模275.2.1 将模糊系统载入SIMULINK275.2.2 在SIMULINK中建立模糊子系统275.3 PID部分的SIMULINK建模285.4 模糊PID控制器的SIMULINK建模295.5 利用子系统对控制系统进行SIMULINK建模295.6 控制系统的SIMULINK仿真研究30第六章 结束语34参考文献35致谢36第一章 绪论1.1 课题研究的背景及学术意义随着越来越多的新型自动控制应用于实践,其控制理论的发展也经历了经典控
13、制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构加到被控系统上;控制系统的被控量,经过传感器、变送器通过输入接口送到控制器。不同的控制系统,传感器、 变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器;电加热控制系统要采用温度传感器1。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用。比如,工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维
14、持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器可以根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。经典PID控制的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它因结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一,现今也在很多领域有应用。尤其是当被控对象的结构和参数不能完全掌握或得不到精确的数学模型,控制理论的其它技术难以采用,系统控制器的结构和参数又必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。根据统计数据:全世界过程控制领域使用
15、的控制器84%仍是纯PID调节器,若改进型包含在内则超过90%。1.2 经典PID控制系统的分类与简介1.2.1 P控制这类控制输出的变化与输入控制器的偏差成比例关系,输入偏差越大输出越大。单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定剩余误差存在的场合。在工业生产中,比例控制规律使用较为普遍,它是控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用2。但是不能最终消除剩余误差的缺点限制了它的单独使用。 1.2.2 PI控制克服剩余误差的办法是在比例控制的基础上加上积分控制。积分控制器的输出与输入偏差对时间的积分成
16、正比。它的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积,一直到偏差为零,累积才会停止。所以,积分控制可以消除剩余误差。1.2.3 PD控制当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟。因此要引入比例、微分作用,即PD控制。它比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小偏差的幅度,节省控制时间,显著改善控制质量。1.2.4 比例积分微分(PID)控制最为理想的控制当属比例-积分-微分控制。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除剩余误差能力,还有微分作用的超前控制功能。当偏差扰动出现时,微分立即
17、大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使振荡幅度减小。由于比例作用是持久和起主要作用的控制规律,积分作用可以慢慢把剩余误差克服掉,因此可使系统比较稳定;只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。然而伴随着新的控制系统的不断涌现,PID控制策略在控制非线性、时变、强耦合及参数和结构不确定的复杂过程时,控制效果不理想。因此,它的应用受到了很大程度上的限制。1.3 模糊逻辑与模糊控制的概念1.3.1 模糊控制相关概念“模糊逻辑”的
18、概念,其根本在于区分布尔逻辑或清晰逻辑,用来定义那些含混不清,无法量化或精确化的问题,对于冯诺依曼开创的基于“真假”推理机制,以及因此开创的电子电路和集成电路的布尔算法,模糊逻辑填补了特殊事物在取样分析方面的空白3。在模糊逻辑为基础的模糊集合理论中,某特定事物具有特色集的隶属度,他可以在“是”和“非”之间的范围内取任何值。而模糊逻辑是合理的量化数学理论,是以数学基础为根本去处理这些不确定、不精确的信息。模糊控制是基于模糊逻辑描述的一个过程的控制算法。它是用模糊数学的知识模仿人脑的思维方式,根据模糊现象进行识别和判决,给出精确控制量,进而对被控对象进行控制的。对于参数精确已知的数学模型,我们可以
19、用波特图或奈克斯特图来分析其过程以获得精确的设计参数。而对一些复杂系统,如粒子反应,气象预报等设备,建立一个合理而精确的数学模型是非常困难的。对于电力传动中的变速矢量控制问题,尽管可以通过测量得知其模型,但由于其多变量且非线性变化的特点,精确控制也是非常困难的。模糊控制技术依据与操作者的实践经验和直观推断,也依靠设计人员和研发人员的经验和知识积累。它无需建立设备模型,因此基本上是自适应的,具有很强的鲁棒性。历经多年发展,已有许多成功应用模糊控制理论的案例,如Rutherford、Carter应用于冶金炉和热交换器的控制装置。1.3.2 模糊控制的优点对比常规控制办法,模糊控制有以下几点优势4:
20、(1)模糊控制完全是在操作人员经验控制基础上实现对系统的控制,无需建立数学模型,是解决不确定系统的一种有效途径。(2)模糊控制具有较强的鲁棒性,被控对象参数的变化对模糊控制的影响不明显,可用于非线性、时变、时滞的系统,并能获得优良的控制效果。(3)由离散计算得到控制查询表,提高了控制系统的实时性、快速性。(4)控制的机理符合人们对过程控制作用的直观描述和思维逻辑,是人工智能的再现,属于智能控制。1.4 模糊控制技术的应用概况国内在模糊控制方面也同样取得了显著成果。1986年,都志杰等人用单片机研制了工业用模糊控制器。随后,何钢、能秋思、刘浪舟等人相继将模糊控制方法成功地应用在碱熔釜反应温度、玻
21、璃窑炉等控制系统中。在社会生活领域中,体现在模糊控制技术在家电中的应用,所谓模糊家电,就是根据人的经验,在电脑或者芯片的控制下实现可模仿人的思维进行操作的家用电器。几种典型的模糊家电产品如下: 模糊电视机这类电视机可根据室内光线的强弱调整电视机的亮度,根据人与电视机的距离自动调整音量,同时能够自动调节电视机的色度、清晰度和对比度。 模糊空调器模糊空调器可以灵敏地控制室内的温度。日本研制了一种模糊空调器,利用红外线传感器识别房间信息(人数、温度、大小、门开关等),从而快速调整室内温度,提高了舒适感。 模糊微波炉日本夏普公司生产的RE-SEI型微波炉,内部装有12个传感器,这些传感器能对食物的重量
22、、高度、形状和温度进行测量,并利用这些信息自动选择化霜、再热、烧烤和对流4种工作方式,并自动决定烹制时间。 模糊洗衣机以我国生产的小天鹅模糊控制全自动洗衣机为例,它能够自动识别洗衣物人重量、质地、污脏性质和程度,采用模糊控制技术来选择合适的水位、洗涤时间、水流程序等,其性能已经达到国外同类产品的水平。 模糊电动剃刀日本三洋、松下公司推出了模糊控制电动剃刀,通过利用传感器分析胡须的生长情况和面部轮廓,自动调整刀片,并选择最佳的剃削速度。在工业炉方面、石化方面、煤矿行业、食品加工行业领域,模糊控制应用也很广泛。1.5 本文的研究目的和内容论文将以学习PID控制理论、模糊控制理论、模糊PID控制器开
23、发、MATLAB下的仿真建模为研究方向,具体内容安排如下:第二章:研究经典PID控制器的工作原理,控制算法及其相应的特点。寻求PID各个控制参数对系统输出的作用规律以及参数整定方法。第三章:着重掌握模糊控制理论,掌握模糊原理、模糊推理过程和模糊控制器的结构和工作方式。第四章:利用模糊控制器和传统的PID控制器结合来形成模糊自适应的PID控制器,通过模糊系统、模糊决策系统和精确化环节来在线确定PID控制器的比例、积分、微分系数,再利用MATLAB仿真程序,通过SIMULINK模块搭建系统,实现控制系统的仿真。分析仿真结果,计算所建立模糊系统的各项指标以验证其实用性和可行性。第二章 PID控制2.
24、1 PID的算法和参数2.1.1 位移式PID算法算法在连续控制系统中,常常采用如图2-1所示的PID控制。图2-1 PID控制流程其控制原则如公式2-1所示。 (2-1)其中,KP比例系数;TI积分时间常数;TD微分时间常数;e(t)偏差;u(t)控制量;经过离散化,获得位置PID的离散算法,如公式2-2所示。 (2-2)调节器输出u(k)与跟过去所有偏差信号有关,计算机需要对e(i)进行累加,运算工作量很大,而且计算机故障可能使u(k)做大幅振荡,这种情况往往使控制很不方便,在有些场合可能会造成严重的事故。另外,控制器的输出u(k)对应的是执行机构的实际位置;如果计算机出现故障,u(k)的
25、大幅度变化会引起执行机构位置的大幅度变化。因此,在实际的控制系统中不太常用这种方法。2.1.2 增量式PID算法依据位移式PID算法,推理得公式2-3。 (2-3)式中,e(k)第k次采样时的偏差值;e(k-1)第(k-1)次采样时的偏差值;u(k)第k次采样时调节器的输出;KP比例系数; ,。依据算法形式,显然可以看出增量式PID算法和位置式算法相比具有以下几个优点:首先,增量式算法只与e(k)、e(k-1)、e(k-2)有关,不需要进行累加,不易引起积分饱和,因此能获得较好的控制效果。其次,在位置式控制算法中,由手动到自动切换时,必须首先使计算机的输出值等于阀门的原始开度,才能保证手动到自
26、动的无扰动切换,这将给程序设计带来困难。而增量式设计只与本次的偏差值有关,与阀门原来的位置无关,因而易于实现手动自动的无扰动切换。再次,增量式算法中,计算机只输出增量,误动作影响小。必要时可加逻辑保护,限制或禁止故障时的输出。为适应更多的应用领域,PID控制器也有了多种算法。2.1.3 积分分离PID算法积分分离PID算法基本思想是:设置一个积分分离阈值,当|e(k)|时,采用PID控制,以便于消除静差,提高控制精度;当|e(k)|时,采用PD控制。其对应的算法如公式2-4所示。 (2-4)其中,为逻辑变量,其取值原则为:对同一控制对象,分别采用普通PID控制和积分分离PID控制,见图2-2。
27、图2-2 PID控制和积分分离PID控制比较 其中1-普通PID控制效果 2-积分分离PID控制效果显然,积分分离的PID比普通的PID的控制效果好。2.1.4 不完全微分PID算法在PID控制器的输出端再串联一阶惯性环节(比如低通滤波器)来抑制高频干扰,平滑控制器的输出,这样就组成了不完全微分PID控制,见图2-3。 PID调节器图2-3 不完全微分PID控制器其控制算法,如公式2-5所示。 (2-5)其中,通过这样的算法,可以延长微分作用的时间,见图2-4。图2-4 不完全微分PID和完全微分PID控制特性比较不完全微分PID控制中的微分作用能缓慢地维持多个采样周期,使一般的工业执行机构能
28、较好地跟踪微分作用的输出。因此,抗干扰能力较强,在一些扰动频繁的场合应用十分普遍。2.2 PID参数对系统控制性能的影响2.2.1 比例系数KP对系统性能的影响比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。KP偏大,振荡次数加多,调节时间加长。KP太大时,系统会趋于不稳定。KP太小,又会使系统的动作缓慢。KP可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果KD的符号选择不当,对象状态就会距离目标状态越来越远,如果出现这样的情况KP的符号就一定要取反。2.2.2 积分时间常数Ti对系统性能的影响积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳
29、态误差,提高系统的控制精度。2.2.3 微分时间常数Td对系统性能的影响微分作用可以改善动态特性。Td偏大时,超调量较大,调节时间较短;Td偏小时,超调量也较大,调节时间也较长。只有Td合适,才能使超调量较小,减短调节时间。2.3 PID控制器的选择与PID参数整定2.3.1 PID控制器的选择在引入PID之前要确定用哪种类型,即选定PID控制器的基本类型。通常依据表2-1原则确定。表2-1 PID控制类型选定原则被控参数控制器备注温度/成分流量/压力液位/料位PIDPIP*K*K:当工业对象具有较大的滞后时,可引入微分作用;但如果测量噪声较大,则应先对测量信号进行一阶或平均滤波。2.3.2
30、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参
31、数进行整定。但无论采用哪一种方法所得到的控制器参数都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。第三章 模糊控制器及其设计3.1 模糊控制器的基本结构与工作原理模糊控制器有如下结构,图3-1呈现了其基本控制流程。模糊化模糊推理知识库解模糊被控对象图3-1 模糊控制器控制流程为了了解模糊控制器的工作原理5,图3-2列出其结构框图。模糊化模糊推理知识库解模糊被控对象图3-2 模糊控制器结构显然,模糊控制器主要由模糊化接口、知识库、模糊推理机、解模糊接口四部分组成,通过单位负反馈来引入误差,并以此为输入量进行控制动作。3.2 模糊控制器各部分组成3.2.1 模糊化接口模糊化接口接
32、受的输入只有误差信号e(t),由e(t)再生成误差变化率或误差的差分e(t),模糊化接口主要完成以下两项功能: 论域变换 模糊化 3.2.2 知识库知识库中存储着有关模糊控制器的一切知识,它们决定着模糊控制器的性能,是模糊控制器的核心6。 数据库(Data Base)数据库中存储着有关模糊化、模糊推理、解模糊的一切知识,包括模糊化中的论域变换方法、输入变量各模糊集合的隶属度函数定义等,以及模糊推理算法、解模糊算法、输出变量各模糊集合的隶属度函数定义等。 规则库(Rule Base)模糊控制规则集,即以“ifthen”形式表示的模糊条件语句,如R1:If e* is A1, then u* is
33、 C1,R2:If e* is A2, then u* is C2,其中,e*就是前面所说的模糊语言变量,A1,A2,An是et*的模糊子集,C1,C2,Cn是u*的模糊子集。规则库中的n条规则是并列的,它们之间是“或”的逻辑关系,整个规则集合的总模糊关系为:。3.2.3 模糊推理机模糊控制应用的是广义前向推理。即通过模糊规则对控制决策进行推断,以确定模糊输出子集。3.2.4 解模糊接口 解模糊 论域反变换 3.3模糊推理方式3.3.1 Mamdani模糊模型(迈达尼型)Mamdani型的模糊推理方法最先将模糊集合的理论用于控制系统7。它是在1975年为了控制蒸汽发动机提出来的。其采用极小运算
34、规则定义表达的模糊关系。如R:If x is A then y is B。式中:x为输入语言变量;A为推理前件的模糊集合;y为输出语言变量;B模糊规则的后件。用RC表示模糊关系,如公式3-1。 (3-1)当x为,且模糊关系的合成运算采用“极大极小”运算时,模糊推理的结论计算如公式3-2所示。 (3-2)3.3.2 Takagi-Sugeno模糊模型(高木-关野)Sugeno模糊模型也称TSK模糊模型,旨在开发从给定的输入输出数据集合产生模糊规则的系统化方法。此类方法将解模糊也结合到模糊推理中,故输出为精确量。这是因为Sugeno型模糊规则的后件部分表示为输入量的线性组合。它是最常用的模糊推理算
35、法。与Mamdani型类似;其中输入量模糊化和模糊逻辑运算过程完全相同,主要差别在于输出隶属函数的形式。典型的零阶Sugeno型模糊规则的形式:If x is A and y is B then z =k。式中:x和y为穿入语言变量;A和B为推理前件的模糊集合;z为输出语言变量;k为常数。更为一般的一阶Sugeno模型规则形式为:If x is A and y is B then z= px+qy+r。当然,以上两种解模糊方法各有千秋。由于Mamdani型模糊推理规则的形式符合人们的思维和语言表达的习惯。因而能够方便地表达人类的知识,但存在计算复杂、不利于数学分析的缺点;Sugeno型模糊推理
36、则具有计算简单,利于数学分析的优点,是具有优化与自适应能力的控制器或模糊建模工具。3.4模糊控制器的维数确定 一维模糊控制器见图3-3,它的输入变量往往选择为受控变量和输入给定值的偏差e,但却很难反映过程的动态特性品质,因而往往被用于一阶被控对象。 二维模糊控制器见图3-4,它的两个输入变量基本上都选用受控变量值和输入给定值的偏差e和偏差变化ec,由于它们能够严格地反映受控过程中输出量的动态特性,故在控制效果上要比一维控制器好得多,目前采用较广泛。 三维模糊控制器见图3-5,它的三个输入分别为系统偏差量e,偏差微分ec,偏差的二阶微分ecc。但由于这种模糊控制器结构复杂,推理运算时间长。因此,
37、适用于动态特性的要求特别高的场合。 图3-3 一维模糊控制器 图3-4 二维模糊控制器 图3-5 三维模糊控制器从理论上讲,模糊控制系统所选用的模糊控制器维数越高,系统的控制精度也就越高。但是维数选择太高,模糊控制律就过于复杂,基于模糊合成推理的控制算法也就更困难。3.5 模糊控制器的隶属函数典型的隶属函数有11种,即双S形隶属函数、联合高斯型隶属函数、高斯型隶属函数、广义钟形隶属函数、双S形乘积隶属函数、S状隶属函数、梯形隶属函数、三角隶属函数、Z形隶属函数。在模糊控制中应用较多的隶属函数有以下6种: 高斯型隶属函数见图4-2,它的MATLAB表示为gaussmf(x,c)。图4-2 高斯型
38、隶属函数 广义钟形隶属函数见图4-3,它的MATLAB表示为gbellmf(x,a,b,c)。图4-3 广义钟形隶属函数 S形隶属函数见图4-4,它的MATLAB表示为sigmf(x,a,c)。图4-4 S形隶属函数 梯形隶属函数见图4-5,它的MATLAB表示为trapmf(x,a,b,c,d)。图4-5 梯形隶属函数 三角形隶属函数见图4-6,它的MATLAB表示为trimf(x,a,b,c)。图4-6 三角形隶属函数 Z形隶属函数见图4-7,它的MATLAB表示为zmf(x,a,b)。图4-7 Z形隶属函数3.6模糊控制器的解模糊过程 重心法 最大隶属度法在推理结论的模糊集合中取隶属度最
39、大的那个元素作为输出量即可。 系数加权平均法3.7 模糊PID控制器的工作原理模糊PID控制器是运用模糊数学的基本理论和方法,把控制规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关专家的控制信息作为知识存入计算机知识库中8,然后计算机根据控制系统实际响应状况,运用模糊控制规则表中的相关的规则进行模糊推理。它能自动调整PID参数,实现对PID控制器参数的最优配备,从而让PID控制具有更强的适应性,优化了控制效果。模糊PID控制器有多种结构和形式,但是其原理都是基本一致的。第四章 模糊PID控制器的设计模糊PID控制器是以操作人员手动控制经验总结出的控制规则为核心,通过辨识系统当前的运行状
40、态;经过模糊推理,模糊判决,解模糊过程得到确定的控制量以实现对被控对象的在线控制。4.1 模糊PID控制器组织结构和算法的确定论文中,模糊PID控制器的设计选用二维模糊控制器。即,以给定值的偏差e和偏差变化ec为输入;KP,KD,KI为输出的自适应模糊PID控制器,见图4-1。图4-1 自适应模糊PID控制器其中PID控制器部分采用的是离散PID控制算法,如公式4-1。 (4-1)4.2 模糊PID控制器模糊部分设计4.2.1 定义输入、输出模糊集并确定个数类别依据模糊PID控制器的控制规律以及经典PID的控制方法9,同时兼顾控制精度。论文将输入的误差(e)和误差微分(ec)分为7个模糊集:N
41、B(负大),NM(负中),NS(负小),ZO(零),PS(正小),PM(正中),PB(正大)。即,模糊子集为e,ec=NB,NM,NS,ZO,PS,PM,PB。将输出的KP,KD,KI也分为7个模糊集:NB(负大),NM(负中),NS(负小),ZO(零),PS(正小),PM(正中),PB(正大)。即,模糊子集为KP,KD,KI=NB,NM,NS,ZO,PS,PM,PB。4.2.2 确定输入输出变量的实际论域根据控制要求,对各个输入,输出变量作如下划定:e,ec论域:-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6KP,KD,KI论域:-6,-5,-4,-3,-2,-1,0,1,2
42、,3,4,5,6应用模糊合成推理PID参数的整定算法。第k个采样时间的整定为式中为经典PID控制器的初始参数。为了便于系统输入,输出参数映射到论域内。根据实验和相关文献,确定模糊化因子为:ke=kec=0.01;解模糊因子为:K1=0.5,K2=K3=0.01。4.2.3 定义输入、输出的隶属函数误差e、误差微分及控制量的模糊集和论域确定后,需对模糊变量确定隶属函数。即对模糊变量赋值,确定论域内元素对模糊变量的隶属度。参考输入、输出变量的变化规律,依据第三章中3.5节相关内容。通过实验、试凑。最终作如下规定:对于输入量误差(e),误差微分(ec)都采用高斯型的隶属函数(gaussmf),同时为
43、体现定义的7个模糊子集,见图4-8和图4-9。 图4-8 偏差隶属函数 图4-9 偏差微分隶属函数对于输出量KP变化量(KP),KD变化量(KD),KI变化量(KI)采用三角形隶属函数(trimf),同时为体现定义的7个模糊子集,见图4-10,4-11,4-12。 图4-10 KP变化量隶属函数 图4-11 KD变化量隶属函数 图4-12 KI变化量隶属函数4.2.4 确定相关模糊规则并建立模糊控制规则表根据参数KP、KI、KD对系统输出特性的影响情况,可以归纳出系统在被控过程中对于不同的偏差和偏差变化率参数KP、KI、KD的自整定原则: 当偏差较大时,为了加快系统的响应速度,并防止开始时偏差
44、的瞬间变大可能引起的微分过饱和而使控制作用超出许可范围,应取较大的KP和较小的KD。另外为防止积分饱和,避免系统响应较大的超调,KI值要小,一般取KI=0。 当偏差和变化率为中等大小时,为了使系统响应的超调量减小和保证一定的响应速度,KP应取小些。在这种情况下KD的取值对系统影响很大,应取小一些,KI的取值要适当。当偏差变化较小时,为了使系统具有较好的稳态性能,应增大KP、KI值,同时为避免输出响应在设定值附近振荡,以及考虑系统的抗干扰能力,应适当选取KD。原则是:当偏差变化率较小时,KD取大一些;当偏差变化率较大时,KD取较小的值,通常为中等大小。参考以上自整定原则,总结工程设计人员的技术知识和实际操作经验,建立合适的关于e、ec、KP、KD、KI的模糊规则,如:1.If (e is NB) and (ec is NB) then (KP is PB)(KI is NB)(KD is PS)2.If (e is NB) and (ec is NM) then (KP is PB)(KI is NB)(KD is NS)3.If (e is NB) and (ec is NS) then (KP is PM)(KI is NM)(KD is NB).49.If (e is PB) and (ec is PB) then (KP is NB)(KI is PB)(