多项式的矩阵表示毕业论文.doc

上传人:laozhun 文档编号:3941325 上传时间:2023-03-28 格式:DOC 页数:15 大小:999.50KB
返回 下载 相关 举报
多项式的矩阵表示毕业论文.doc_第1页
第1页 / 共15页
多项式的矩阵表示毕业论文.doc_第2页
第2页 / 共15页
多项式的矩阵表示毕业论文.doc_第3页
第3页 / 共15页
多项式的矩阵表示毕业论文.doc_第4页
第4页 / 共15页
多项式的矩阵表示毕业论文.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《多项式的矩阵表示毕业论文.doc》由会员分享,可在线阅读,更多相关《多项式的矩阵表示毕业论文.doc(15页珍藏版)》请在三一办公上搜索。

1、多项式的矩阵表示前言本文探讨多项式的矩阵表示,并应用于计算多项的和,差与积运算,进而导出除法中商式与余式的表达公式,以及给出用矩阵去判断多项式整除的方法。另一方面,本文实际上是用矩阵方法证明了多项式求和求积运算的合理性。我们使用等效矩阵的概念,把通常教材中的多项式的和,乘积的定义进行了规范化处理,弥补教材中的不足。本文的方法与文献4中提供的形式上不同,但在求积上本质相同。预备知识设F是一个给定的数域,为正整数集,以表示上型矩阵全体构成的集合。表示上关于未定元x的一元多项式环。设表示的转置。定义1 设,若满足下列条件之一(1) 当时,(2) 当时,(3) 当时,则称与等效,记为 引理1 设则中元

2、素的等效关系是等价关系。证明 任取,则有,适合,由定义1中的(1),可知若有,不访设则由定义1的(1)推出,而由定义1的(2)应用定义1中的(3)推出。类似,若定义1的(3)成立,应用(2)推出。故总有。对于,若,当或时,总有。如果有彼此不等的情况,可以分出6种情形讨论。(1) (2) (3)(4) (5) (6)例如当(5)成立时,可设,从而即其他情形同理可证。证毕。定义2 设则有使,我们称为的底,记引理2 规定零向量的底为设则且底唯一,进而证明 由定义2若也为的底,则,推出,由与的(1,1)位置元均非零,由等效定义。另外,由证毕。由1,ch,8,矩阵元素可以是中元素。于是,我们有如下命题,

3、证明是显而易见的。命题1 设,则称为的系数矩阵。记 ,不难指出下列命题成立命题2 设则 证明 设则有适合即从而由多项式相等的定义1,2,ch1故命题2为真。证毕。推论1 设则为的系数矩阵。推论2 设若,则对于任意适合存在使得证明 设,则有 从而其中证毕。推论3 设若,则有适合,证明是显然的。正文定理1 设则的系数矩阵彼此等效,反之,与的某个系数矩阵等效的矩阵,必为的系数矩阵。此为命题2的另一种叙述形式。定义3 设,任取 则为与的和。命题3 设则,0表示中任意一个零向量,此命题的证明可由定义3与等效的概念显然推出。命题4 设,若则证明 由定义2与引理2,推出 从而 推得并且有推出,证毕。定理2

4、设的系数矩阵等于的系数矩阵与的系数矩阵之和。证明 由命题2的推论可知对于正整数或或都有从而既。另外,设的系数矩阵,由定理1在经命题4,由定理1知的系数矩阵,证毕。定理3 设,当表示等效关系的等价类,即定义则商集是上的线性空间。证明 设经命题4推出导出所定义的运算确为代数运算。又由命题3推知 是交换群。以及推出对于所给加法与数乘运算构成上的线性空间。证毕。定义4 设下述矩阵称为由生成的型矩阵。命题5 设,则。其中 (1)利用矩阵乘法即可推出证明。定理4 设均为上的多项式,则 (2)并且对于任意与等效的矩阵,与等效的矩阵,均有其中等于证明 由乘积定义1,1ch,1其中即(2)式为真。不妨设于是即例

5、1 设试利用矩阵方法计算。证明 推出定理5【3】 设,则其中证明 由带余除法(1,3ch,1),存在由上式,利用多项式和与积的矩阵形式,有即进而令上式化为 (3)由于行列式可逆,且(见1,7,ch,4)于是(3)式化为从而证毕。注:对于定理5中的总可以添加余数为0的项,使例2 设的商式与余式。 1,44页解 经定理5推出另一种解法可用初等列变换去做 推出.定理6 在定理5的假设下,则下列命题彼此等价(1)(2) (3)证明 由1,Th.1,3,ch,1 ,。而由定理5,的余式故 下述线性方程有解 (4) (5)但由 从而(3)为真。待添加的隐藏文字内容3 存在适合即(1)为真。证毕。例3 问。

6、解 这里于是故整除成立为整除的充分必要条件。解毕。结束语在写完多项式的矩阵表示和一些基本运算后,我认为最起码的要求就是必须经过数次修改不断地浓缩才能吸收到最精华的、高层次的以及更深入的认识与理解。故此,也必须做到以下几点要求:第一、 数学基础。数学里面的各部分东西,大部分都可以把它们串联在一起的。但重要的是必须掌握最基本的定义及性质,例如论文中最主要的矩阵和多项式这两个问题,我们如何应用其它的知识把他们联系起来。这就需要我们对基本概念问题有足够的了解。第二、 数学语言。数学不同于文学,应用到最多无疑是数学语言。如数学符号等,就像大物理学家伽利略说的,展现在我们面前的宇宙像一本用数学语言写成的大

7、书。如不掌握,就像在黑暗的迷宫里游荡,什么也认识不清。因此在预备知识里涉及了一些基本概念。第三、 数学结构。清晰的结构是为后文提供研究方向,本文正文第一部分是从矩阵的表示开始入手的,第二部是从矩阵形式的基本运算入手的,第一部是第二部的基础,第二部是第一部的深入。致谢辞我在大学本科四年的学习过程中深刻的感悟到,学无止境,不进则退。在学院的良好学习氛围中,老师们的传道、授业、解惑使我受益匪浅,尤其是老师们在学术上孜孜不倦的钻研精神更鞭策我努力学习。我衷心地感谢教过我、帮助过我的老师们,我也会非常珍惜同学间的友谊。论文的写作过程,也使我明白一个人不能只注重学习纯粹的知识,还要在学习的过程中有意识地培

8、养自己踏实和严禁的态度,这样才能通过学习真正提高自己的学术水平,同时还要学以致用,在实践中不断提高自己的工作能力。在此,我要感谢我的老师对本文的指导,他在百忙之中不吝赐教,从论文的结构、内容方面给予我很多很好的建议,使我的论文修改工作变得很顺畅。我也非常感谢老师给予我的相关指导。老师们时刻保持着的谦虚、务实、求是的科学态度鼓舞着我,并且他(她)们严谨的治学精神将永远激励着我。感谢所有帮助过我的人.参考文献【1】 北京大学数学系高等代数教研室代数组.高等代数(第二版).高等教育出版社,1988年3月【2】 苏郑军【3】 王路群,刘象武.多项式除法中商与余式的显式表达.高师理科学刊,2007年2月【4】 蒋忠樟.高等代数典型问题研究.高等教育出版社,2006年5月第一版

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号