《新型多功能电子闹钟设计毕业设计.doc》由会员分享,可在线阅读,更多相关《新型多功能电子闹钟设计毕业设计.doc(55页珍藏版)》请在三一办公上搜索。
1、(2009届)本科生毕业设计(论文)学 院、系: 电气与信息工程学院 专 业: 电子信息工程 学 生 姓 名: 班 级: 学号 指导教师姓名: 职称 教授 最终评定成绩 2009年6月2009届本科毕业设计(论文)资料第一部分 毕业论文(2009届)本科毕业设计(论文)新型多功能电子闹钟设计学 院(部): 电气与信息工程学院 专 业: 电子信息工程 学 生 姓 名: 班 级: 学号 指导教师姓名: 职称 教授 最终评定成绩 2009年6月摘 要本文提出了一种基于AT89C51单片机的新型多功能电子闹钟。通过对设计方案的比较与论证,选择了适合本设计的时钟模块、闹铃模块、温度检测模块、键盘及显示模
2、块、电源模块设计方案。其中实时时钟采用DS12C887实现年月日时分秒等时间信息的采集和闹钟功能;温度检测模块由DS18B20集成温度传感器对现场环境温度进行实时检测;键盘和数码管与ZLG7289连接,通过键盘数码管可方便地校对时钟和设置闹钟时间;用蜂鸣器进行声音指示;采用7805 三端稳压集成芯片稳定输出5V直流电压。通过对AT89C51单片机最小系统的原理分析,结合论文的设计要求,完成了系统流程图及系统程序的设计。本设计可实现时间显示、闹钟设置、环境温度测量、交直流供电电源等功能。关键词:单片机,电子闹钟多功能设计,温度检测,交直流供电ABSTRACTIn this article a n
3、ew type of multi-functional electronic alarm clock, is based on AT89C51 single-chip controller is designed. Through the comparison of design and feasibility studies, choosing a design of the clock module, alarm module, the temperature detection module, a keyboard and display module, and power module
4、 design. Real time clock uses DS12C887 to achieve accurate date and alarm function such as the collection of time information; Temperature detection detects the on-site real-time by the integrated temperature sensor DS12B20 ambient temperature; keyboard and digital tube are connected with ZLG7289, c
5、an be easy to proof-reading alarm clock and set up time; It use buzzer for voice instructions; Using 7805 three-terminal regulators chip output DC voltage of 5V. By analysis the minimum system principium of singlechip AT89C51, combine the request of this character, I finished the design of system fl
6、ow chart and system program.The design can achieve the goal of time display, the alarm settings, the ambient temperature measurement, AC-DC power supply functions. Key word: AT89C51, the temperature sensor DS18B20, keyboard and demonstrates the ZLG7289, buzzer7805目 录第1章 绪论11.1 电子闹钟研究的背景11.2 本课题研究的意义
7、11.3 本课题研究的主要内容2第2章 电子闹钟硬件电路设计42.1 电子闹钟总体设计方案的比较与论证4 2.1.1 设计要求4 2.1.2 设计方案的比较和论证42.2 电子闹钟主机电路设计及原理5 2.2.1 AT89C51芯片概述5 2.2.2 系统时钟电路设计8 2.2.3 系统复位电路设计82.3 时钟模块的设计及原理9 2.3.1 时钟模块设计方案比较比较与论证9 2.3.2 DS12C887芯片概述9 2.3.3 DS12C887与单片机的连接图142.4 温度检测模块的设计及原理14 2.4.1 温度检测模块设计方案比较与论证14 2.4.2 DS18B20芯片概述14 2.4
8、.3 DS18B20的内部结构15 2.4.4 DS18B20在设计中的连接图172.5 闹铃声光指示电路设计172.6 键盘及显示电路设计18 2.6.1 ZLG7289芯片概述18 2.6.2 ZLG7289在设计中与键盘及数码管的连接图202.7 电源电路的设计20第3章 系统原理分析及软件部分223.1 原理分析223.2 单片机最小系统223.3 系统软件部分23 3.3.1 软件总体设计23 3.3.2 系统流程图及程序23结 论26参考文献27致 谢28附 录129附 录231第1章 绪论1.1 本课题研究的背景随着科学技术的进步,现在的闹钟也不再是过去的老样子。在过去几百年的时
9、间里,人类发明的闹钟有的采用公鸡的鸣叫声,有的用教堂和佛寺的钟声,而现在市面上出现了各种各样的钟,以声或光的形式提醒。如数字闹钟、字谜闹钟、小鸡闹钟、礼品小闹钟、旅行闹钟、卡通闹钟、机械闹钟、石英闹钟、卡通语言钟、扫描钟、打铃钟、工艺钟等系列产品。制造者们根据社会的需求为人类定制各种各样的产品。闹钟在向美观化、多功能化、时尚化的方面发展。1787年美国人李维赫特金斯制造出第一个闹钟。这个闹钟只会在每天早晨4点响这是赫特金斯每天起床的时间。所以这个闹钟不能在别的任何时候响。第一批更加适合顾客使用的闹钟也是在美国诞生的。1956年,美国通用电气生产出类似于现在的闹钟。在它闹响后,你必须按一下才能让
10、它停。否则隔5分钟以后它还会响。尽管在20世纪80年代出现了用声音控制和反射控制的闹钟,就是说你必须拍手、大喊一声或者用手把闹钟在空中摇摆几下,闹钟才不会继续响。尽管有了这些新奇的发明,闹钟还是在继续向前发展来满足人类的需求。在下面论文中主要介绍新型电子闹钟。它由单片机AT89C51控制时钟芯片DS12C887和ZLG7289连接的键盘和数码管,显示年、月、日、时、分、秒,和市面上的相比它不美观,但是它不仅能进行和它们一样的工作,还能利用键盘输入代码给单片机,由它控制所需要进行的功能。如12小时制或24小时制计时,其中12小时制有AM和PM时间操作功能;在设计中还具有温度的测量,采用数码管,显
11、示时间和温度。闹铃的铃声采用蜂鸣器发声提示。1.2 本课题研究的意义20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。闹钟的升级也随着电子技术的发展个加速,利用电子技术设计的多功能电子闹钟,在功能上得到了极大的扩展。而人们生活的日新月异,对闹钟功能的要求也越来越高、越来越多,继续深入研究电子闹钟功能的更新与扩展意义非凡。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘
12、无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间。尤其在医院,每次护士都会给病人作皮试,测试病人是否对药物过敏。注射后,一般等待5分钟,一旦超时,所作的皮试试验就会无效。手表当然是一个好的选择,但是,随着接受皮试的人数增加,到底是哪个人的皮试到时间却难以判断。所以,要制作一个闹铃系统,随时提醒这些容易忘记时间的人。 闹钟的数字化以及多功能化,给人们生产生活带来了极大的方便,而且极大地扩展了闹钟原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、定时启闭电路、定时开关烘箱、通断动力设备、温度检测,甚至各种定
13、时电气的自动启用等,所有这些,都是以闹钟数字化为基础的。因此,研究多功能电子闹钟及扩大其应用,有着非常现实的意义。着眼生产与生活的需要,无论是个人的时间把握,还是生产时间的掌控,都需要对时间计量、提示更精确的闹钟来满足要求,新型多功能电子闹钟需要继续深入的研究,本课题的设计也是极有意义的。1.3 本课题研究的内容本论文主要分为5个章节,分篇对本课题的设计进行概述与解释。第1章绪论,主要对本课题的研究背景以及通篇内容进行概述。第2章电子闹钟硬件电路设计及原理,为本论文的主要部分,对本设计的各个硬件模块的电路设计及原理,做出了详细的阐述。主要包括:(1)电子闹钟总体设计方案的比较和论证,提出了本课
14、题设计的要求,并列出了两种设计方案,通过对两种方案的比较进行选择,画出了系统的设计框图。(2)电子闹钟主机电路设计及原理,对主机选用的AT89C51芯片进行了概述,提出了系统时钟电路和复位电路的设计方案。(3)时钟模块的设计及原理,列出了时钟模块的几种方案及其优缺点,选择适合本设计的方案,并对所选方案中的芯片DS12C887进行了说明,画出了DS12C887芯片与单片机的连接电路图。(4)温度检测模块的设计及原理,对比了几种温度检测模块的方案,根据其特点选择了适合本设计的方案,对所选方案中的芯片DS18B20进行了说明,画出了DS18B20芯片与单片机的连接电路图。(5)闹铃声光指示电路设计,
15、对本设计采用的闹铃方案进行了说明。(6)键盘及显示电路设计,根据本设计的需要,采用了LED数码管显示的方式,对键盘控制芯片ZLG7289进行了说明,画出了ZLG7289与单片机的连接电路图。(7)电源电路的设计,根据系统采用的单片机的要求,设计了交直流交叉供电的电源系统。第3章系统原理分析及软件,对本设计的软件系统原理进行了分析,画出了单片机最小系统的原理图,对整个系统的软件流程图进行了设计。第4部分结论,主要对本论文的研究成果以及本论的不足之处进行总结,并提出了对本设计的展望。第2章 电子闹钟硬件电路设计本论文,新型多功能电子闹钟的设计,是通过整合各个功能模块的硬件电路,配以最优化的系统软件
16、来实现的。本章为论文的主要部分,提出了设计的要求,比较和论证了本设计的总体方案和各功能模块的硬件电路设计方案,完成了各模块的硬件电路设计和交直流交叉供电的稳压电源设计。2.1总体设计方案的比较与论证2.1.1设计要求本设计为新型多功能电子闹钟设计,其功能“新”的表现也是本设计要达到的要求,本设计拟定达到以下八点要求:(1) 能任意设定走时起始时间;(2) 能设定闹铃时间;(3) 能指示秒节奏,即秒指示;(4) 12小时/24小时两种制式可选;(5) 采用交直流供电电源;(6) 具有走时误差修正能力;(7) 具有温度显示的功能;(8) 停电时由电池供电,计时不会丢失。2.1.2设计方案的比较与论
17、证总体设计方案的选择,决定了后面的研究方向,选择一个更好的总体设计方案,对今后的设计有指导性的作用。一个好的的总体设计方案,除了本身具有更适合设计的功能优势,还会为后面的研究节约大量的时间,避开后面功能模块选择的弯路,所以进行总体方案的比较和论证是极其必要的1。本设计的主机方案主要有两种2,如下:方案一:采用AT89C2051微处理器控制。显示电路采用4个共阳极数码管显示,设置两个按键和一个按钮,闹铃模块采用蜂鸣器,蜂鸣器连接单片机,由单片机直接控制,PNP小功率三极管9012驱动。电源采用7805 三端稳压集成芯片控制,稳定输出5V直流电压。此方案设计简单,能实现设计的要求,但灵活性较低,不
18、利于各种功能的扩展。方案二:采用AT89C51单片机来实现系统的控制。键盘用芯片ZLG7289控制,时钟芯片采用DS12C887,温度传感器采用DS18B20,电源采用7805 三端稳压集成芯片控制,稳定输出5V直流电压。此系统硬件简洁,将复杂的硬件功能用软件实现,因此系统控制灵活,能很好地满足本题的基本要求和扩展要求。比较以上两种方案的优缺点,方案一仅能简单实现闹钟的功能,而方案二采用的时钟芯片DS12C887能够自动产生世纪、年、月、日、时、分、秒等时间信息,显示简洁、灵活、可扩展性好,能完全达到设计要求,故采用第二种方案。方案二设计,系统框图,如图2.1所示。2.1系统方框原理图2.2电
19、子闹钟主机电路设计及原理2.2.1 AT89C51单片机的概述本设计采用的AT89C51单片机,是一种带4K字节闪烁可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机3。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失内存制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁内存组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单
20、片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案4。2.2.1.1 AT89C51单片机的主要特性 本设计的主机AT89C51单片机性能优越,为许多嵌入式控制系统所采用,具有的主要特性如下5:(1)与MCS-51 相容;(2)4K字节可编程闪烁内存;(3)寿命:1000写/擦循环;(4)数据保留时间:10年;(5)全静态工作:0Hz-24Hz;(6)三级程序内存锁定;(7)128*8位内部RAM;(8)32可编程I/O线;(9)两个16位定时器/计数器;(10)5个中断源 ;(11)可编程串行通道;(12)低功耗的闲置和掉电模式;(13)片内振荡器和时钟电路 。2.2.1.2 AT89C
21、51单片机的管脚说明本设计需要用到AT89C51单片机的大多数管脚,AT89C51单片机的管脚名称及信息说明如下:VCC:供电电压。GND:接地。P0口:P0口为一个8位漏极开路双向I/O口,每个管脚可吸收8TTL门电流。当P1口管脚第一次写1时,被定义为高阻态。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4T门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时
22、,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口在用于外部程序内存或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是
23、8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器
24、复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部内存时,地址锁存允许的输出电平用于锁存地址的地位字节在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序内存的选通信号。在由外部程序内存取指令
25、期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序内存(0000H-FFFFH),不管是否有内部程序内存。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序内存。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。2.2.1.3 AT89C51单片机的振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出,该反向放大器可以配置为片内振荡器,可采用石
26、晶振荡或陶瓷振荡。如采用外部时钟源驱动器件,XTAL2则不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。2.2.1.4 AT89C51单片机的芯片擦除整个PEROM数组和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。在芯片擦除操作中,代码数组全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。
27、在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其它芯片功能,直到下一个硬件复位为止。2.2.2 系统时钟电路设计单片机的管脚XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石英振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL1应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度6。对于时间要求不是很高的系统,只要按图7进行设计就能使系统可靠起振,并稳定运行。但由于图中的C1、C2电容起到系统时钟频率微调和稳定的作用,因此在本闹钟系统的实际应用中一定要注意正确选择参数(
28、3010uF),并保证电路的对称性,选择正牌厂家生产的瓷片或云母电容,如果可能的话,温度系数要尽可能低。实验表明,这两电容组件对闹钟的正负走时误差有较大的关系。系统时钟电路的设计,如图2.2所示。图2.2 系统时钟电路2.2.3 系统复位电路设计智能系统一般应有手动或上电复位电路,复位电路的实现通常有两种方式:既专用的P监控电路和RC复位电路。前者电路实现简单,成本低,但复位系统可靠性较低;后者成本较高、但复位系统可靠性较高,尤其是高可靠重复复位。对于复位要求高、并对电源电压进行监视的场合,大多数采用这种控制方式8。2.2.3.1 专用的P监控电路专用的P监控电路又称为电源监控电路,具有上时可
29、靠产生复位信号和电源电压跌落到“门坎值”时可靠产生复位信号等功能。按有效电平分,有高电平、低电平输出两种;按功能分,有简单的电源监视复位电路、带“看门狗”定时器(WATCH DOC Timer,WDT)的监控电路和WDT+E2PTOM的监控电路等多种类型。比较常见的厂家有MAXIM、Philips、IMP及DALLS等,51系列微处理器常用的型号有MAX831L、MAX809、X25043/5等。2.2.3.2 RC复位电路本系统采用的是RC复位方式。RC复位电路的实质是一介充放电电路,结合图2.3 RC复位电路可说明这种复位电路的特点。系统上电的时该电路提供有效的复位信号RST(高电平)直至
30、系统电源稳定后撤销复位信号(低电平)。从理论上来说,51系列单片机复位引脚只要外加两个机器周期的有效信号即可复位,即只要保证t =RC2M(机器周期)便可。但在实际设计中,通常C1取值10F,R1取值为10 K左右。实践发现,R1如果取值太小,例如1K,则会导致RST信号驱动能力变差而无法使系统可靠复位。图2.3 RC复位电路2.3 时钟模块的设计及原理2.3.1 时钟方案的比较系统时钟的设计是本设计的基础,闹钟的功能需要在系统时钟的功能下才能实现,系统时钟设计的方案,通常有以下两种:方案一:因为题目中只要求显示小时、分钟、秒,因此可以用门电路组合构成时钟发生器,但此方案硬件复杂,稳定性低,且
31、不易控制。方案二:采用带RAM的时钟芯片DS12C887。该芯片可以进行时分秒的计数,具有100年日历,可编程接口,还具有报警功能和掉电保存功能,并且可以对其方便的进行程控。比较两种方案,后者完全能满足题目的要求,而第一种方案,硬件复杂、稳定性低、不易控制,权衡优劣,选择方案二。2.3.2 DS12C887的概述DS12C887是 DALLAS 公司的产品,采用CMOS技术制成,它能在不供电的情况下使用十年以上。它在没有电压输入的情况下,内部RAM,时间,日期,闹钟设置信息都不会丢失。在外部电压输入不足(低于4.25V)时,自动写保护,不管片选是否有效,电压降到3V以下就自动切换到内部锂电池供
32、电。首次使用此模块时,需要对DS12C887初始化,在晶振开启以后,不用再做初始化9。2.3.2.1 DS12C887 主要特点 为了更好的了解这款时钟芯片,并应用到设计中去,简要介绍DS12C887时钟芯片的主要技术特点,如下:(1)可作为IBM AT计算机的时钟和日历;(2)与MC146818B和DS1287的管脚相容;(3)具有完备的时钟、闹钟及到2100年的日历功能,可选择12小时制或24小时制计时,有AM和PM、星期、夏令时间操作,闰年自动补偿等功能;(4)具有可编程选择的周期性中断方式和多频率输出的方波发生器功能;(5)DS12887内部有14个时钟控制寄存器,包括10个时标寄存器
33、,4个状态寄存器和114bit作掉电保护用的低功耗RAM;(6)由于该芯片具有多种周期中断速率时钟中断功能,因此可以满足各种不同的待机要求,最长可达24小时,使用非常方便;(7)时标可选择二进制或BCD码表示;(8)工作电压:+4.5-5.5V,工作电流:7-15mA,工作温度范围:0-70;(9)MOTOROLA和INTEL总线时序选择。2.3.2.2 DS12C887的管脚说明DS12C887内部由振荡电路,分频电路,周期中断/方波选择电路,14字节时钟和控制单元,114字节用户非易失RAM,十进制/二进制累加器,总线接口电路,电源开关写保护单元和内部锂电池等部分组成。DS12887引脚分
34、配和DS12C887的结构框图如图2.4,2.5所示。 图2.4 DS12C887的引脚排列图2.5 DS12C887的结构框图GND、VCC:直流电源,其中VCC接+5V输入,GND接地,当VCC输入为+5V时,用户可以访问DS12C887内RAM中的数据,并可对其进行读、写操作;当VCC的输入小于+4.25V时,禁止用户对内部RAM进行读、写操作,此时用户不能正确获取芯片内的时间信息;当VCC的输入小于+3V时,DS12C887会自动将电源发换到内部自带的锂电池上,以保证内部的电路能够正常工作。MOT:模式选择脚,DA12C887有两种工作模式,即Motorola模式和Intel模式,当M
35、OT接VCC时,选用的工作模式是Motorola模式,当MOT接GND时,选用的是Intel模式。本文主要讨论Intel模式。SQW:方波输出脚,当供电电压VCC大于+4.25V时,SQW脚可进行方波输出,此时用户可以通过对控制寄存器编程来得到13种方波信号的输出。AD0AD7:复用地址数据总线,该总线采用时分复用技术,在总线周期的前半部分,出现在AD0AD7上的是地址信息,可用以选通DS12C887内的RAM,总线周期的后半部分出现在AD0AD7上的数据信息。AS:地址选通输入脚,在进行读写操作时,AS的上升沿将AD0AD7上出现的地址信息锁存到DS12C887上,而下一个下降沿清除AD0A
36、D7上的地址信息,不论是否有效,DS12C887都将执行该操作。表2.1 周期性中断率和方波中断频率寄存器A中的控制PI 周期中断周期SQW输出频率RS3RS2RS1RS00000无无00013.90625ms256 Hz00107.8125ms128 Hz0011122.070s8129 Hz0100244.141s4096 Hz0101488.281s2048 Hz0110976.5625s1024 Hz01111.953126ms512 Hz00003.90625ms256 Hz00017.8125ms128 Hz001015.625ms64 Hz001131.25ms32 Hz0100
37、62.5ms16 Hz0101125ms8 Hz0110250ms4 Hz0111500ms2 HzDS/RD:数据选择或读输入脚,该引脚有两种工作模式,当MOT接VCC时,选用Motorola工作模式,在这种工作模式中,每个总线周期的后一部分的DS为高电平,被称为资料选通。在读操作中,DS的上升沿,使DS12C887将内部数据送往总线AD0AD7上,以供外部读取。在写操作中,DS的下降沿将使总线AD0AD7上的数据,锁存在DS12C887中;当MOT接GND时,选用Intel工作模式,在该模式中,该引脚是读允许输入脚,即Read Enable。R/W:读/写输入端,该管脚也有2种工作模式,当
38、MOT接VCC时,R/W工作在Motorola模式。此时,该引脚的作用是区分进行的是读操作还是写操作,当R/W为高电平时为读操作,R/W为低电平时为写操作;当MOT接GND时,该管脚工作在Intel模式,此时该引脚作为写允许输入,即Write Enable。CS:片选输入,低电平有效。IRQ:中断请求输入,低电平有效,该引脚有效对DS12C887内的时钟、日历和RAM中的内容没有任何影响,仅对内部的控制寄存器有影响,在典型的应用中,RESET可以直接与VCC连接,这样可以保证DS12C887在掉电时,内部控制寄存器不受影响。2.3.2.3 DS12C887的存储功能在DS12C887内有10字
39、节RAM用来存储时间信息,4字节用来存储控制信息,其具体地址及取值,如表2.2所示。 表2.2 DS12C887的地址及取值ADDRESSLOCATIONFUNCTIONDECIMALRANGERANGEBINARY DATA MODEBCD DATA MODE0Seconds00-5900-3B00-591Seconds alarm00-5900-3B00-592Minutes00-5900-3B00-593Minutes alarm00-5900-3B00-594Hours-12-hr Mode1-1201-0C AM,81-8C PM01-12 AM,81-92 PMHours-24-h
40、r Mode0-2300-1700-235Hours alarm-12-hr1-1201-0C AM,81-8C PM01-12 AM,81-92 PMHours alarm-24-hr0-2300-1700-236Day of the week Sunday=11-701-0701-077Data of the month1-3101-1F01-318Month1-1201-0C01-129Year0-9900-6300-9950Century19,20NA19,202.3.3 DS12C887与单片机的连接图在各种设备、家电、仪器、工业控制系统中,可以很容易地用DS12C887来组成时间获
41、取单元,以实现各种时间的获取。图2.6是用AT89C51单片机和DS12C887芯片构成的,时间获取电路图,其中DS12C887的基地址为7F00H,相应的程序采用C51语言编写(设计中为Intel工作模式)。图2.6 DS12C887时钟硬件电路图2.4 温度检测的设计及原理2.4.1 温度检测模块设计方案比较与论证常见温度检测系统的设计,有以下两种方案10:方案一:采用热电偶或热敏电阻作感温组件,但热电偶需冷端补偿,电路设计复杂,热敏电阻虽然精度较高,但需要标准稳定电阻匹配才能使用,而且重复性、可靠性都比较差。方案二:采用集成温度传感器DS18B20,该传感器结构简单,不需外接电路。相比较,方案二完全能满足题目的要求,且分辨率较高,重复性和可靠性好,所以采用方案二。2.4.2 DS18B20温度传感器的概述DS18B20是DALLAS公司最新单线式数字温度传感器:新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS18B20,是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入