《机械专业毕业设计(论文)外文翻译 行星的发展减少电机与机械动力监测和网络能力.doc》由会员分享,可在线阅读,更多相关《机械专业毕业设计(论文)外文翻译 行星的发展减少电机与机械动力监测和网络能力.doc(15页珍藏版)》请在三一办公上搜索。
1、 行星的发展减少电机与机械动力监测和网络能力在Jang和Kwee-Bo Sim*摘要: 这篇文章描述有用的方式测量适应的扭矩和RPM马达。 为此我们做了行星行星减速器包括2个霍尔传感器它和监控系统。 监控系统显示感觉的价值(扭矩, rpm)并且故意的价值(力量)和它也有网络能力使用Bluetooth协议。 我们表示,我们的解答是更多低廉和简单的方法措施扭矩和rpm比以前。主题词: 霍尔传感器,行星减少马达,遥远的显示器,扭矩。1. 介绍当马达转动时,扭矩和rpm是变化作为装载或驾驶的状态连接通过减少单位改变。 相反,你可能监测装载或驾驶的变动状态以测量的马达扭矩方式和rpm. 对扭矩和rpm测
2、量的申请包括确定功率引擎,马达、涡轮,或者其他转动的设备引起或消耗。 在工业界, ISO 9000和其他质量管理规格现在要求测量扭矩的公司在制造业期间,特别是,当紧固件是应用的1。传感器做必需的扭矩和rpm自动测量在螺丝和汇编机器,和可以增加到手工具。 在两个盒,收集的数据在数据可以被积累日志记录器为质量管理和报告目的。扭矩传感器的其他工业应用包括测量的金属撤除率在机器工具; 扭矩工具和传感器的定标;测量的果皮力量、摩擦和瓶盖扭矩;测试的春天; 并且做生物动态措施ments。 有扭矩测量方法使用张力测量仪和桥式电路。 可以安装应变仪直接地在轴。 由于轴是转动,扭矩传感器可以连接到它的电源并且信
3、号波形加工电子通过滑动环。应变仪可以通过变压器也连接,消灭对高效维护滑动环的需要。用于扭矩测量的应变仪包括箔、散开的半导体和薄膜类型。这些可以连接直接地轴焊接或胶粘剂1。但是,因为这是联络方法,它有生活是依赖于转动的速度和使用的时间。如此这系统需求在一些的替换零件或整体系统为维护。 并且这系统也是相对地大和昂贵的,要求在先的讨厌的过程。测量方法在rpm测量可以是划分成3个主要小组; 机械,光学和频闪观测的测量方法4。机械方法是联络方法和有某一缺点,但这个方法是寂静的为低革命频繁地使用在20之间和20,000 转每分钟。 光学rpm测量是最普遍的并且有测定范围的0对100,000rpm。自转被传
4、达给测量仪器通过来自仪器的红外线射线由一卷反射性磁带在对象然后反射。频闪观测的测量方法使用频闪观测的原则和有清楚的好处其他测量方法使用机械或光学传感器; 运用这个方法测量是可能的非常小对象rpm或在不能进入的地方。它有测定范围的100对20,000rpm。在本文,我们提出另非与方法联系使用测量扭矩和rpm霍尔效应传感器. 我们做了减少马达使用行星训练并且投入霍尔效应传感器在它。 这个电动机组也有监视可能通过测量扭矩和rpm的系统霍尔效应传感器。 这个监控系统包括无线通信的作用与一台远程服务器使用Bluetooth协议。 它可以给电动机组远程存取点。2. 扭矩和rpm测量2.1. 关于行星火车的
5、特殊性能多数马达在它的中轴有减少单位增加扭矩或减少不能的速度体会在单独马达。 在许多应用,你使用各种各样得到期望扭矩和速度传动箱以调整减速比。有许多传动箱,但角色行星火车越来越成为重要现今。 此提议的方法研究是实际情形用行星传动箱。很明显的优势,行星齿轮火车是更高的扭矩容量,更小的尺寸,更低重量和提高效率特性研究行星设计。规模小和模块化施工行星齿轮火车,也意味着它们可以拼装分几个阶段进行,提供高还原能力,从一个高度紧凑封装。因此,行星齿轮火车是可取的办法,在许多方面,如车轮和绞车驱动,也回转硬盘大转折直径cogged项目需要慢运动非常高的负荷 3 。图。 1所示的一般结构,行星齿轮列车。特别企
6、划约行星齿轮列车它们可以产生不同的齿轮比视乎其中齿轮您使用作为投入,其中齿轮你利用作为产出,其中,你仍然持有。在所提出的方法这个研究中,我们考虑发生这种情况的投入是太阳齿轮,而我们举行齿圈文具和重视的输出轴向星球的载体。当然,这是可能的运用我们法,以其他案件;孙齿轮静止或行星承运人平稳。2.2 .基本思路为测量扭矩在齿轮火车,齿圈是固定到房屋由一个弹性材料。当电动机转动,其负荷,使部分应变之间的静止元(齿圈)和旋转要素(太阳齿轮和行星承运人)由行动反应部队。这株推出弹性材料,然后,它使一些位移相对应,其扭矩。与普通方法测量应变本身,我们试图侦测位移所致由应变和结构的特点,本行星齿轮火车。我们可
7、以测量这个位移用霍尔传感器和磁铁对。2.3 .测量扭矩在许多应用中,线性霍尔效应传感器是配合使用永久磁铁。至最大限度地线性度,一个大的变化,在电场强度比所需的位移,是理想的。谨慎选择该磁体和方式安置这磁石,将付出很大的红利。高品质,高场强磁体一般需要在大多数线性传感应用。表1显示了一些基本的磁铁特性特别是磁铁类型和钐钴或磁钢八磁体推荐 6 。有一些方法结合起来,磁铁与霍尔传感器。图。 2显示幻灯片式传感方法采用单磁铁这是一个不复杂的方法获取线性输出电压与滑动式运动。显示图。 2 ,取决于地点该传感器的相对零场中心的磁石,消极和积极输出可以制作中心部分的产量是非常线性的。为我们的霍尔传感器,该传
8、感器的输出电压在该中心的磁铁是vcc / 2 。显示图。 3 ,适当的磁铁,在规模和磁力,可直接安装于齿圈。我们作出了一个洞就齿圈支持者(弹性材料)与单纯重视的霍尔传感器。空气中的差距传感器和磁铁另一个重要因素,良好的灵敏度。总体而言,最薄弱的磁体(灵活)将一般运行在0.25毫米至2毫米范围内,而最强(钕或钐钴)可能会让空气间隙为4毫米至6毫米。该霍尔传感器的输出电压成为香港艺术发展局通过输入放大器的监测系统。关系位移和扭矩也不同与汽车大小,电容和类型等,所以我们应该得出关系方程或甩(查找表)衡量每机械位移,从各种参考道具扭矩。我们认为甩补偿非线性特性的霍尔传感器及其他未知因素。2.4 .测量
9、RPM显示图。 3 ,我们注重妥善磁铁对地球的载体和内容,其他大厅传感器对对方的磁铁。由于电动机转动,磁铁附上对行星的载体,也是旋转,这是经过对固定霍尔传感器每旋转。输出电压霍尔本霍尔传感器成为比较投入的监管制度。图。 4显示了另一种滑动式传感方法测量rpm的。相图。 2 ,霍尔传感器在图。 4滑动对南极的磁铁。如果比较器输入值超过参考值,计数旗将设置;跌破参考值,计数国旗,将被清拆。我们可以计算出转与时间间隔这种计数国旗的时期。我们也可以取代霍尔效应传感器霍尔效应开关或霍尔集成电路 5,7 。霍尔开关综合比较与预定义开关点和一个数字输出可适应不同的逻辑系统。所有大厅交换机包括:开漏输出晶体管
10、,需要有一个外部拉了电阻,电源电压无关。一个标准的音乐厅开关有一个单一的大厅板块和响应有关绝对值磁场垂直该板块。该霍尔开关的特点是磁转辙器乐队(或国际收支) ,博夫(或brpn ) 。如果磁通量超过茂时,输出晶体管开动;跌破,博夫,晶体管关掉。磁滞bhys是区别的转辙器乐队和,博夫。3 .计算扭矩, rpm和力3.1 .输出力矩测量扭矩是校准输出数据由艺发局利用关系方程或甩和输出扭矩是最后的展示价值确定按下列公式,从测量扭矩。以=吨架z3 1 +架z3 ) /架z3 , ( 1 )到:输出扭矩展示t3的:测量扭矩z1 :有多少牙齿的太阳齿轮架z3 :有多少牙齿的齿圈3.2 .测量RPM (wo
11、)作为计数输出脉冲的霍尔传感器或音乐厅开关,我们可以很容易地计算出转的马达。不同的霍尔效应传感器,霍尔效应开关已好处就是可以直接连上微控制器输入端口没有额外的电路喜欢比较,因为它们的输出霍尔电压离散的脉搏。但由于霍尔开关其特点是磁性开关点乐队和,博夫,我们不能更改的参考价值或开关站。 测量rpm的值,可以作为代表以下方程。 To= T z3 1+ z3) / z3, (1) To: 输出扭矩展示T3 : 测量扭矩z1 : 有多少牙齿太阳齿轮z3 : 有多少牙齿的齿圈3.3.发射功率(W)该发射功率往往成为更为有用重要措施,比其他任何展示价值可乘以输出扭矩和rpm 。W= To wo. (3)
12、4 .监控系统4.1 .主板图。 6显示框图监测制度。这是简单而组成的3条主要部件;霍尔传感数据输入和处理部分,其中包括中央处理器,通讯部分,而且用户界面的一部分包括液晶显示器和按键。霍尔传感数据输入部分,有一个放大器艺发局测量扭矩,并作比较测量rpm的。特别是参考电压为测量rpm的,是需要变,为消除干扰噪声。其中的噪音干扰,可被磁铁产生的磁通从汽车本身当电动机转动。我们会设法消除这种噪音在地控制阈值设定转计数旗。因此,我们用一个可变电阻调整适当的参考意见。4.2 .联网能力它是趋于昂贵的测量系统有自己的通信环境是否他们是有线或无线。其中, rs232串口通信是目前最流行的和基本的,在许多工业
13、应用。但流动系统是越来越重要的今天。特别是无处不在的环境正成为非常大的问题。在我们的研究中,我们把自己的监测系统,以具有无线通信能力,通过蓝牙模块。我们作出的监察制度,以重视对汽车股尽可能紧凑。这个监控系统只是收集大厅传感器输出的价值观和传达他们的原始资料,以个人电脑或笔记型电脑透过无线通讯。用户可以监测其最后的数据处理微机。它并不难,扩大远程监控,以对互联网基础与tcp / ip 。蓝牙技术是一种利用技术在短距离( 10米)无线电联系,打算取代有线( )连接便携式和/或固定电子设备等。其关键特点是耐用性,低复杂度,低功耗成本低。设计运行环境噪音的频率环境中,蓝牙收音机使用一种快速确认和跳频计
14、划使环节,竞争力不强。蓝牙无线通信模块,操作在2.4ghz和避免干扰其它信号由跳跃到一个新的频率后,转递或收到一包。蓝牙技术还可以很容易形成一个微微网,其中有硕士和7个奴隶 10 。在许多工业应用中,大多数系统,可以有很多汽车,而不是只有一个,每个电机有一个与其他汽车公司。就这样的环境,该微微网内使用蓝牙技术将提供若干其他优势以及远程监控功能和这是另一个原因,我们认为蓝牙在我们的研究。5 .实验5.1.实验我们选择了atmega128的励磁调节器作为中央处理器,因为它有10位adc和片上模拟比较器。该atmega128的还支持差分输入渠道,它具有可编程增益的10倍和200x的,因此,我们可以放
15、大霍尔传感器的输出力矩10 前/模数转换。主要特点实验局;CPU : ATmega128,ADC : 10-bit resolution with gain 10x on CPU, LCD : character LCD type,KEY : 2 keys,COMM.: 422MHz RF Module.我们想用蓝牙模块,但对于容易使用后,射频模组,是先在我们的实验。执行的,蓝牙技术是阔叶明年一步。我们实验中,我们已研制出转矩传感器模块构成的霍尔传感器和2磁铁对。其基本思想是我们的扭矩传感器需由光电传感器构成的发射器和接收器对。图。 7显示结构,我们力矩传感器和无花果。8显示特性霍尔输出电压推
16、拉办法 6 。在案件的推拉方式,传感器动作两磁铁。补充领域提供一个线性的,陡坡耕地产量。产量近轨至轨(接地至vcc )与极性取决于磁铁方向。在我们的实验中,位移的转矩约0.25毫米在29.4 nm左右。6 .结论一种方法来衡量机械转矩开发电动汽车是建议。扭矩测量方法试行本学习是减少的情况,当输入的是孙齿轮,而我们掌握齿圈文具和重视输出轴,以该星球的载体。另一种是过载情况下,当输入的是星球的载体,我们抓住了齿圈文具和附上输出轴,以太阳齿轮。我们可以运用我们的方法,不是向齿圈平稳的情况外,也有其他的案件;孙齿轮文具和行星承运人平稳。所建议的方法很简单,非常小很便宜,在测量功率包括扭矩和rpm的汽车
17、。这方法不需要添加剂保养,因为这是该非接触式的方法。此外,对实验中,我们的非接触式方法降低振动和噪声的汽车远不止我们作出的。这是因为使用弹性材料这也意味着,我们可以测量扭矩更多正好,我们可以扩大我们的应用范围更比较普遍。在这个情况下,测量扭矩或功率重要的是,我们的解决方案不仅是简单和便宜而且还可以举一个实例进行监管价值观。即时监测功率,扭矩和rpm通过无线通信是非常有用的并有多种应用。事实上,我们可以作汽车股较小的广泛应用,我们像机器人手指来控制力量。一般来说,行星齿轮火车比较昂贵,比平常多级齿轮箱。但值得以取代以往的多级齿轮箱我国行星齿轮传动,具有远程监控能力和添加剂的优势。总之,我们的解决
18、方案具有很强的点尺寸,成本和无线通讯。所以它可以提供许多应用在工业领域和延长申请的是依赖于用户的想象力。此外,使用的微微网或散射净我们的运动单位,将作其它用途。Development of Planetary Reduction Motor with Mechanical Power Monitoring and Network CapabilityIn-hun Jang and Kwee-Bo Sim*Abstract: This article describes the useful way to measure the torque and RPM of the gearedmotor
19、. For this we have made the planetary geared reduction motor including 2 Hall sensors in it and the monitoring system. The monitoring system displays the sensing values (torque, rpm) and the calculated value (power) and it also has the network capability using the Bluetooth protocol. We will show th
20、at our solution is much more inexpensive and simple method to measure torque and rpm than before.Keywords: Hall sensor, planetary reduction motor, remote monitor, torque.1. INTRODUCTIONWhen the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through re
21、duction units are changing. On the contrary, one can monitor changes of the loads or the driving status in the manner of measuring motor torque and rpm. Applications for torque and rpm measurement sinclu de determining the amount of power an enginemotor, turbine, or other rotating device generates o
22、r consumes. In the industrial world, ISO 9000 and other quality control specifications are now requiring companies to measure torque during manufacturing, especially when fasteners are applied 1. Sensors make the required torque and rpm measurements automatically on screw and assembly machines, and
23、can be added to hand tools. In both cases, the collected data can be accumulated on data loggers for quality control and reporting purposes. Other industrial applications of torque sensors include measuring metal removal rates in machine tools; the calibration of torque tools and sensors; measuring
24、peel forces, friction, and bottle cap torque; testing springs; and making bio-dynamic measurements. There is a torque measuring method using the strain gauge and bridge circuit. A strain gage can be installed directly on a shaft. Because the shaft is rotating, the torque sensor can be connected to i
25、ts power source and signal conditioning electronics via a slip ring. The strain gage also can be connected via a transformer, eliminating the need for high maintenance slip rings. Strain gages used for torque measurements include foil, diffused semiconductor, and thin film types. These can be attach
26、ed directly to the shaft by soldering or adhesives 1. But, because this is a contact method, it has the lifetime which is dependent on rotating velocity and used time. So this system demands on replacement of some parts or whole system itself for maintenance. And this system is also relatively big a
27、nd expensive, requiring preceding annoying process. The measuring method in rpm measurement can be divided into 3 main groups; mechanical, optical and stroboscopic measuring methods 4. The mechanical method is the contact method and has the some disadvantage, but this method is still frequently used
28、 for low revolutions between 20 and20,000 rpm. The optical rpm measurement is the most popular and has the measuring range of 0 to 100,000rpm. The rotation is transmitted to the measuring instrument via infra red light beam coming from the instrument which is then reflected by a reflective tape on t
29、he object.The stroboscopic measuring method uses the stroboscopic principle and has clear advantages over other measuring methods using mechanical or optical sensors; using this method it is possible to measure the rpm of very small objects or in inaccessible places. It has the measuring range of 10
30、0 to 20,000rpm.In this paper, we are going to propose another non contact method to measure torque and rpm using the Hall effects sensor. We have made reduction motor using planetary gear trains and put the Hall effects sensor in it. This motor unit also has the monitoring system that can measure th
31、e torque and rpm through the Hall effects sensors. This monitoring system includes the function of wireless communication with a remote server using Bluetooth protocol. It gives a motor unit to have the remote access point.2. TORQUE AND RPM MEASURMENT2.1. The special feature about planetary gear tra
32、inMost motor has a reduction unit on its center shaft to increase torque or to decrease velocity that can not be realized in a motor alone. In many applications, one gets desired torque and velocity using various gearboxes with adjusting reduction ratio.There are many kinds of gearboxes, but the rol
33、e of planetary gear trains is becoming more and more important nowadays. The method proposed by this study is the case with planetary gearboxes.The obvious advantages of the planetary gear trains are the higher torque capacity, smaller size, lower weight and improved efficiency characteristics of a
34、planetary design. The small size and modular construction of planetary gear trains also means that they can be assembled in several stages, providing high reduction capability from a highly compact package. As such, planetary gear trains are the preferred solution in many areas such as wheel and win
35、ch drives and also slewing drives for turning large diameter cogged items that require slow movement at very high loads 3.Fig. 1 shows the general structure of planetary gear train. The special feature about planetary gear train is that they can produce different gear ratios depending on which gear
36、you use as the input, which gear you use as the output, and which one you hold still.In the method proposed by this study, we consider the case that the input is the sun gear, and we hold the ring gear stationary and attach the output shaft to the planet carrier. Of course, it is possible to apply o
37、ur method to other cases; sun gear stationary or planet carrier stationary.2.2Basic idea for measuring torqueIn the gear train, the ring gear is fixed to the housing by an elastic material.When the motor is rotating, the loads make some strain between the stationary element (the ring gear) and the r
38、otating elements (the sun gear and planet carrier) by the action-reaction force. This strain pushes out the elastic material and then it makes some displacement corresponding to its torque.Compare with ordinary method measuring the strain itself, we try to detect the displacement caused by the strai
39、n and the structural characteristic of the planetary gear train. We can measure this displacement by using the hall sensor and magnet pair.2.3. Measurement of the torqueIn many applications, the linear Hall effects sensors are used in conjunction with a permanent magnet. To maximize linearity,a larg
40、e change in field strength vs. the required displacement is desired. Careful selection of the magnets, and the way of placement of that magnet, will pay large dividends.High-quality, high field-strength magnets are generally required in most linear sensing applications.Table 1 shows some basic magne
41、t characteristics on particular magnet types and Samarium-cobalt orAlnico 8 magnets are recommended 6.There are some methods to combine the magnetwith Hall sensor.Fig. 2 shows slide-by sensing method using single magnet that is a non-complex method of obtaining a linear output voltage vs. slide-by m
42、ovement. As shown in Fig. 2, depending upon the location of the sensor relative to the zero-field center of the magnet, both negative and positive outputs can be produced and the center portion of the output is very linear. For our Hall sensor, the sensor output voltage at the center of magnet is Vc
43、c/2.As shown in Fig. 3, a proper magnet in the size and the magnetic force can be mounted directly on the ring gear. We make a hole on the ring gear supporter (elastic material) and simply attach the Hall sensor.The air gap between the sensor and the magnet is another important factor for good sensi
44、tivity.In general terms, the weakest magnets (flexible) would typically operate in a 0.25 mm to 2 mm range, while the strongest (neodymium or samarium cobalt) could allow an air gap of 4 mm to 6 mm.The Hall sensor output voltage becomes the ADC input through the amplifier of the monitoring system.Th
45、e relations between the displacement and the torque also vary with the motor size, capacitance and types etc. So we should derive the relational equation or LUT (Look Up Table) measuring the each mechanical displacement from the various reference dummy torque. We consider LUT for compensating nonlin
46、ear characteristic of Hall sensor and other unknown factor.2.4. Measurement of the RPMAs shown in Fig. 3, we have attached a proper magnet on the Planet Carrier and set the other Hall sensor on the opposite side of the magnet.As the motor is rotating, the magnet attached on the planet carrier is als
47、o rotating and it is passing by on the fixed hall sensor every rotation.Output hall voltage of this Hall sensor becomes the comparator input of the monitoring system.Fig. 4 shows another slide-by sensing method for measuring RPM.Comparing with Fig. 2, the hall sensor in Fig. 4 is sliding on the Sout
48、h Pole of the magnet.If the comparator input value exceeds the reference value, a counting flag will be set; on dropping below the reference value, a counting flag will be cleared. We can calculate the RPM with the time interval of this counting flags period.We can also replace the Hall effects sensor with Hall Effect switch or Hall IC 5,7. Hall switches have an integrated comparator with predefined switching points and a digital output which can be adapted to different logic systems. All Hall switches include an open-dr