机电一体化毕业设计(论文)风机控制系统的整体设计.doc

上传人:文库蛋蛋多 文档编号:3945899 上传时间:2023-03-28 格式:DOC 页数:37 大小:488KB
返回 下载 相关 举报
机电一体化毕业设计(论文)风机控制系统的整体设计.doc_第1页
第1页 / 共37页
机电一体化毕业设计(论文)风机控制系统的整体设计.doc_第2页
第2页 / 共37页
机电一体化毕业设计(论文)风机控制系统的整体设计.doc_第3页
第3页 / 共37页
机电一体化毕业设计(论文)风机控制系统的整体设计.doc_第4页
第4页 / 共37页
机电一体化毕业设计(论文)风机控制系统的整体设计.doc_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《机电一体化毕业设计(论文)风机控制系统的整体设计.doc》由会员分享,可在线阅读,更多相关《机电一体化毕业设计(论文)风机控制系统的整体设计.doc(37页珍藏版)》请在三一办公上搜索。

1、山东英才学院毕业设计题 目 风机控制系统的整体设计专 业 机电一体化姓 名 指导教师 二O一O年一月十日摘 要在我们的日常生活中,风机设备应用广泛,诸如锅炉燃烧系统和烘干系统等。传统的风机控制是全速运转,即不论生产工艺的需求大小,风机都提供数值的风量,而生产工艺往往需要对炉膛压力。风速、风量及温度等指标进行控制和调节,最常用的方法是调节风门或档板开度的大小来调整受控对象,这样就是能量从风门、档板的节流中损失掉了。统计资料显示,在工业生产中,风机的风门,挡板及其相关设备的节流损失以及维护,维修费用占到生产的725.这不仅造成大量的能源浪费和设备损耗,而且控制精度也受到限制,直接影响产品质量和生产

2、效率。因此有必要对风机进行合理的改造。 变频调速是上世纪80年代初发展起来的新技术,具有易操作,免维护,控制精度高等优点。普通电动机采用变频调速技术后,在其拖动负载无须任何改动的情况下,就可以按照生产工艺要求调整转速。因此,风机设备完全可以用变频驱动方案取代风门,挡板控制方案,从而降低电机功耗,达到系统高效运行的目的。因此,正确掌握风机的设计,对保证风机的正常经济运行是很重要的。关键词:风机性能;风机控制;风机设计;变频调整;变频器等。AbstractIn our daily lives, fan equipment, widely used, such as the boiler combu

3、stion system. Ventilation systems and drying systems. Traditional fan control is at full speed, that is, regardless of the size of the production process needs, fans provide a fixed value of air flow, while the production process is often the need for furnace pressure, wind speed, air volume and tem

4、perature control and adjustment indicators, the most commonly used method is regulating damper or baffle opening to adjust the size of the controlled object, so that the energy from the throttle, the throttle on duty lost out. Statistics show that in industrial production, fan damper, baffle and its

5、 associated equipment, throttle loss and maintenance, maintenance costs, accounting for production 7 to 25. This is not only caused a great deal of energy waste and equipment wear and tear, and the control accuracy also limited direct impact on product quality and production efficiency. It is essent

6、ial to the transformation of rational fans. Frequency is the early 80s of last century developed a new technology, with easy to operate, maintenance-free, control and high precision. Ordinary motor using frequency control technology, in its drag the load without any changes to the case, you can adju

7、st the speed of the production process requirements. Therefore, the fan device can use the program to replace the inverter-driven throttle, baffles control program, thereby reducing electrical power consumption, efficient operation to achieve the purpose of the system. Therefore, the correct grasp t

8、he fan design, ensuring the normal fan is very important to the economy.Key Words: fan performance; fan control; fan design; frequency conversion; converter and so on目 录第一章 概述11.1 风机简述11.2风机的分类11.3风机的用途31.4风机的主要性能参数31.5风机机械部分的组成41.6风机控制系统的发展及方案论证41.6.1风机控制系统的发展41.6.2风机控制系统的方案论证6第二章 风机的机械部分的设计82.1电动机

9、的选择方法82.2风机测试传感器的设计选用92.3压差测量92.4风机静压测量与传感器122.5风机工作轮的设计计算与选型122.6风机叶片的设计与选型152.7风机进出气机壳的设计计算与选型172.8风机轴承的设计计算及选型182.9连轴器的选型与计算202.10风机传动组的设计计算20第三章 风机控制系统的设计273.1风机变频器的选择与设计273.2总体设计30致 谢32参考文献33第一章 概述1.1 风机简述风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心风机基本相同。1862年,英国的varber发明离心风机,其叶轮、机壳为同心圆型,机壳用砖

10、制,木制叶轮采用后向直叶片,效率仅为40左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心风机,结构已比较完善了。 1892年法国研制成横流风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心风机,并为各国所广泛采用;19世纪,轴流风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100300帕,效率仅为1525,直到二十世纪40年代以后才得到较快的发展。 1935年,德国首先采用轴流等压风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流风机;旋轴流风机、子午加速轴流风机、斜流风机和横流风机也都获得了发展。风机是依靠输入的机械能,提高气体

11、压力并排送气体的机械,它是一种从动的流体机械。 风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。1.2风机的分类1.风机按使用材质分类可分为多种,如铁壳风机(普通风机)、玻璃钢风机、塑料风机、铝风机、不锈钢风机等等。2.按出口压力(升压)分为:通风机(1.5万Pa),鼓风机(1.535万Pa),压缩机(35万Pa)。

12、其中,通风机多为民用,其他两类多用于工业、矿业场合。3.按工作原理分为:透平式(离心式、轴流式、混流式、横流式)和容积式(如罗茨风机等)。离心式风机(气流轴向流入旋转叶道,在离心力作用下被抛向叶轮外缘,具有较高的压力系数、相对低的流量流量系数) 根据压力高低分为高压(150003000Pa)、中压(30001000Pa)、低压(1000Pa)。 根据叶片出口安装角不同离心风机分为前向、径向、后向离心风机,其中前向风机又分为一般前向和前向多翼风机两种。 离心风机一般由叶轮、机壳、集流器、电机和传动件(如主轴、带轮、轴承、三角带等)组成。叶轮由轮盘、叶片、轮盖、轴盘组成。机壳由蜗板、侧板和支腿组成

13、。 柜式离心风机属于前向多翼风机是前向风机中的一种,他具有高压力系数和大流量系数及低噪声特点,其叶片数很多(一般为4080),叶片很窄,前向多翼风机特别适于在空调系统中使用。 市场上一般离心风机多由联合设计组设计的“三化”风机,如4-72、4-73、5-47、5-48、9-19、9-26等系列产品。前向多翼风机系列模板主要是国外机型为主,如科禄格(新加坡)、LAU牌(美国)和尼科达(意大利);国内机型为11-62和YDW-11/12等系列以及众多上述进口机型的仿制品。 轴流风机(气体轴向进入旋转叶道被加压后再轴向排出,具有低压、大流量、高效特点)。 轴流风机按压力高低分为高压(5005000P

14、a)、低压(500Pa)。低压主要用于一般场所的通风换气用。 轴流风机一般由叶轮、机壳、集流器和电机组成,叶轮由叶片和轮毂组成,机壳由风筒、机架板和支架组成。 市场品种主要有T30、T35、T40(工排)、CDZ、SF、DZ、降温风机(APB系列)等。 混流风机(气体以与主轴成一定角度进入旋转叶道,具有高压大流量的特点) 混流风机介于轴流和离心之间,其结构与轴流相似,一般由叶轮、机壳、集流器和电机组成。其机壳由风筒、导流内筒、导叶等组成。 市场上主流的混流风机产品系列主要有:SWF(HWF-),SJG(HWF-)、HL3-2A、(HWF-V)。 横流(贯流)风机(气体横贯旋转叶道进入再横贯流出

15、,出口气流扁平,风速高) 风幕机(空气幕)是横流风机中的代表产品,它可有效阻隔室内外空气的对流,因而风幕机在有空调或有异味的公共场所应用广泛。1.3风机的用途风机一般用于锻冶炉及高压强制通风,亦可广泛用于输送物料、空气及无腐蚀性、不自然、不含粘性物质之气体。介质温度一般不超过50(最高不超过80),介质中尘土及硬质颗粒物含量不大于150mg/m3。1.4风机的主要性能参数风机性能试验是以测试试验数据,绘制风机性能曲线为主,所以正确理解风机主要性能参数和性能曲线尤为重要。风机的主要性能参数有流量、全压、功率、转速及效率。(1)轴功率:原动机传递给风机转轴上的功率,即为输入功率,又称为轴功率,以p

16、表示单位为kw。(2)效率:风机输入功率不可能全部传给被输送气体,其中必有一部分能量损失,被输送的气体实际所得到的功率比原动机传递至风机轴端的功率要小,他们的比值称为风机的效率,以几表示。风机效率越高,则气体从风机中得到的能量有效部分就越大,经济性就越高。(3)流量:单位时间内风机所输送的流体量称为流量。常用体积流量Q表示,其单位为“耐/s”或“m3/h”。严格地讲,风机的流量,特指风机进口处容积流量。(4)有效功率:单位时间内通过风机的气体所获得的总能量称为有效功率,单位为kw。(5)全压:单位体积的气体在风机内所获得的能量称为全压或风压,以P表示,单位为Pa。(6)转速:风机轴每分钟的转数

17、称为转速,以n表示,单位为r/min。风机的各性能参数一般都不是在试验台上直接测量的,而是通过对试验数据进行计算而得到。得到风机性能参数后,绘制风机的性能曲线为风机性能试验的最终结果,风机的性能曲线有两种,包括有因次性能曲线和无因次性能曲线。(7)有因次性能曲线:将风机在各工况下的性能参数值用曲线连接起来,绘制在直角坐标系中,用以表示风机流量、功率、效率、全压与静压之间的关系曲线。(8)无因次性能曲线:为了选择、比较和设计风机,经常采用一系列无因次参数。风机的无因次性能曲线是去掉各种计量单位的物理性质而表示的风机流量、功率、效率、全压与静压之间的关系曲线。因为这些性能参数去除了计量单位的影响,

18、所以对每一种型式的风机,仅有一组无因次性能曲线。无因次性能曲线与计量单位、几何尺寸、转速、气体密度等因素无关,所以使用起来十分方便。无因次性能曲线在风机的选型设计计算的应用中尤为广泛。1.5风机机械部分的组成N07.116主要由叶轮、机壳、进风口、传动组等组成。 叶轮:9-19型风机叶片为12片,19-26型风机叶片为16片。均属前向弯曲型。叶轮扩压器外缘最高圆周线速度不得超过140m/s。叶轮成型后经静、动平衡校正和超速运转实验,故运转平稳。 机壳:用普通钢板焊接成蜗壳形整体。 进风口:做成收敛式流线型整体结构,用螺栓固定于前盖板上。 传动组:由主轴、轴承箱、联轴器等组成。主轴由优质钢制成,

19、轴承箱整体结构,采用滚动轴承,用轴承润滑脂润滑。1.6风机控制系统的发展及方案论证1.6.1风机控制系统的发展风机的控制系统是风机的重要组成部分,它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系统(变频器)几部分组成。各部分的主要功能如下:监控系统(SCADA):监控系统实现对全风场风机状况的监视与启、停操作,它包括大型监控软件及完善的通讯网络。主控系统:主控系统是风机控制系统的主体,它实现自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能。它对外的三

20、个主要接口系统就是监控系统、变桨控制系统以及变频系统(变频器),它与监控系统接口完成风机实时数据及统计数据的交换,与变桨控制系统接口完成对叶片的控制,实现最大风能捕获以及恒速运行,与变频系统(变频器)接口实现对有功功率以及无功功率的自动调节。变桨控制系统:与主控系统配合,通过对叶片节距角的控制,实现最大风能捕获以及恒速运行,提高了风力发电机组的运行灵活性。目前来看,变桨控制系统的叶片驱动有液压和电气两种方式,电气驱动方式中又有采用交流电机和直流电机两种不同方案。究竟采用何种方式主要取决于制造厂家多年来形成的技术路线及传统。变频系统(变频)器:与主控制系统接口,和发电机、电网连接,直接承担着保证

21、供电品质、提高功率因素,满足电网兼容性标准等重要作用。从我国目前的情况来看,风机控制系统的上述各个组成部分的自主配套规模还相当不如人意,到目前为止对国外品牌的依赖仍然较大,仍是风电设备制造业中最薄弱的环节。而风机其它部件,包括叶片、齿轮箱、发电机、轴承等核心部件已基本实现国产化配套(尽管质量水平及运行状况还不能令人满意),之所以如此,原因主要有:(1)我国在这一技术领域的起步较晚,尤其是对兆瓦级以上大功率机组变速恒频控制技术的研究,更是最近几年的事情,这比风机技术先进国家要落后二十年时间。前已述及,我国风电制造产业是从2005年开始的最近四年才得到快速发展的,国内主要风机制造厂家为了快速抢占市

22、场,都致力于扩大生产规模,无力对控制系统这样的技术含量较高的产品进行自主开发,因此多直接从MITA、Windtec等国外公司采购产品或引进技术。(2)就风机控制系统本身的要求来看,确有它的特殊性和复杂性。从硬件来讲,风机控制系统随风机一起安装在接近自然的环境中,工作有较大振动、大范围的温度变化、强电磁干扰这样的复杂条件下,因此其硬件要求比一般系统要高得多。从软件来讲,风机要实现完全的自动控制,必须有一套与之相适应的完善的控制软件。主控系统、变桨系统和变频器需要协同工作才能实现在较低风速下的最大风能捕获、在中等风速下的定转速以及在较大风速下的恒频、恒功运行,这需要在这几大部件中有一套先进、复杂的

23、控制算法。国内企业要完全自主掌握确实需要一定时间。(3)风机控制系统是与风机特性高度结合的系统,包括主控、变桨和变频器在内的控制软件不仅算法复杂,而且其各项参数的设定与风机本身联系紧密,风机控制系统的任务不仅仅是实现对风机的高度自动化监控以及向电网供电,而且还必须通过合适的控制实现风能捕获的最大化和载荷的最小化,一般的自动化企业即使能研制出样机,也很难得到验证,推广就更加困难。而中小规模的风机制造商又无力进行这样的开发。即便如此,国内企业通过这几年的努力,已经在控制系统主要部件的开发上取得了积极进展,已基本形成了自主的技术开发能力,所欠缺的主要是产品的大规模投运业绩以及技术和经验积累。比如,作

24、为风机控制系统中技术含量最高的主控系统和变频器,国内企业在自主开发上已取得重要进展。东方自控经过几年的努力,已成功开发出DWS5000风机控制系统,并已完成各种测试及风机运行验证,实现了规模化生产,基本形成了自主开发能力。科诺伟业也研制出了兆瓦级机组的控制系统。在变频器方面,东方自控、合肥阳光、清能华福、科诺伟业等一批企业也异军突起,开发出了大功率双馈及直驱机型的变频器,产品已有小批量在风场投运,呈献出可喜的发展势头。1.6.2风机控制系统的方案论证随着国内企业所开发风机容量越来越大,风机控制技术必须不断发展才能满足这一要求,如叶片的驱动和控制技术、如更大容量的变频器开发,都是必须不断解决的新

25、的课题,这里不进行详细阐述。当前,由于风力发电机组在我国电网中所占比例越来越大,风力发电方式的电网兼容性较差的问题也逐渐暴露出来,同时用户对不同风场、不同型号风机之间的联网要求也越来越高,这也对风机控制系统提出了新的任务。(1)采用统一和开放的协议以实现不同风场、不同厂家和型号的风机之间的方便互联。目前,风机投资用户和电网调度中心对广布于不同地域的风场之间的联网要求越来越迫切,虽然各个风机制造厂家都提供了一定的手段实现风机互连,但是由于采用的方案不同,不同厂家的风机进行互联时还是会有很多问题存在,实施起来难度较大。因此,实现不同风机之间的方便互联是一个亟待解决的重要课题。(2)需要进一步提高低

26、电压穿越运行能力(LVRT)。风力发电机组,尤其是双馈型风机,抵抗电网电压跌落的能力本身较差。当发生电网电压跌落时,从前的做法是让风机从电网切出。当风机在电网中所占比例较小时,这种做法对电网的影响还可以忽略不计。但是,随着在网运行风机的数量越来越大,尤其是在风力发电集中的地区,如国家规划建设的六个千万千瓦风电基地,这种做法会对电网造成严重影响,甚至可能进一步扩大事故。欧洲很多国家,如德国、西班牙、丹麦等国家,早就出台了相关标准,要求在这种情况下风机能保持在网运行以支撑电网。风机具有的这种能力称为低电压穿越运行能力(LVRT),有的国家甚至要求当电网电压跌落至零时还能保持在网运行。我国也于今年8

27、月由国家电网公司出台了风电场接入电网技术规定,其中规定了我国自己的低电压穿越技术要求,明确要求风电机组在并网点电压跌落至20%额定电压时能够保持并网运行625ms、当跌落发生3s内能够恢复到额定电压的90%时,风电机组保持并网运行的低电压穿越运行要求。应该说,这还只是一个初步的、相对较低的运行要求。在今后可能还会出台更为严格的上网限制措施。这些要求的实现,主要靠控制系统中变频器算法及结构的改善,当然和主控和变桨系统也有密切联系。(3)实现在功率预估条件下的风电场有功及无功功率自动控制。目前,风电机组都是运行在不调节的方式,也就是说,有多少风、发多少电,这在风电所占比例较小的情况下也没有多大问题

28、。但是,随着风电上网电量的大幅度增加,在用电低谷段往往是风机出力最大的时段,造成电网调峰异常困难,电网频率、电压均易出现较大波动。当前,电网对这一问题已相当重视,要求开展建设风电场功率预测系统和风电出力自动控制系统,实现在功率预测基础上的有功功率和无功功率控制能力。事际上,这个系统的建设不是一件容易的事情,涉及到很多方面的技术问题。但是,无论如何说,序幕已经拉开。第二章 风机的机械部分的设计2.1电动机的选择方法在现代化工农业生产中,各种生产机械都广泛应用电动机来驱动,正确地选用与机械负载配套的电动机,可以使电动机在最经济、最合理的方式下运行,从而达到降低能耗、提高效率的目的。选择电动机有以下

29、几种方法:根据电源电压、使用条件、拖动对象选择电动机。要求电源电压与电动机额定电压相符。根据安装地点和工作环境选择不同型式的电动机。根据容量、效率、功率因数、转数选择电动机。如果容量选择过小,就会发生长期过载现象,影响电动机寿命甚至烧毁。如果容量选择过大,电动机的输出机械功率不能充分利用,功率因数也不高。因为电动机的功率因数和效率是随着负载变化的。电动机在恒定负载运行下,功率计算公式如下: 式中:电动机的功率(KW); 生产机械功率(KW); 生产机械本身效率; 电动机效率上式计算出的功率不一定与产品规格相同,所以选择电动机的额定功率(P1)应等于或稍大于计算所得的功率。当改变大气压力pb、温

30、度t时的换算式:按该公式换算为标准状态下的参数。注脚“0”表示标准状态下或性能表中的参数,无“0”表示风机实际工作条件下的参数,所选电动机不低于所需功率。在所选系列风机性能曲线上,可以根据流量对应的压力,选出风机的转速,在标准状态下的轴功率加上电动机储备系数得出电动机功率。计算比转数大小,在已有系列产品中查找比转数相等或相近的通风机。2.2风机测试传感器的设计选用本系统采用的传感器包括压差传感器、压力传感器和扭矩传感器。压差传感器主要用于检测流量,压力传感器主要用于检测静压,扭矩传感器主要用于检测功率信号。2.3压差测量差压式流量计(以下简称DPF或流量计)是根据安装于管道中流量检测件产生的差

31、压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。DPF由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件的型式对DPF分类,如孔扳流量计、文丘里管流量计及均速管流量计等。二次装置为各种机械、电子、机电一体式差压计,差压变送器和流量显示及计算仪表,它已发展为三化(系列化、通用化及标准化)程度很高的种类规格庞杂的一大类仪表。差压计既可用于测量流量参数,也可测量其他参数(如压力、物位、密度等)。压差测量工作原理充满管道的流体,当它流经管道内的节流件时,如图2-1示,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,

32、产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。图2-1压差测量工作原理 式中 qm-质量流量,kg/s; qv-体积流量,m3/s; C-流出系数; -可膨胀性系数; -直径比,=d/D; d-工作条件下节流件的孔径,m; D-工作条件下上游管道内径,m; P-差压,Pa; 1-上游流体密度,kg/m3。由上式可见,流量为C、d、P、 6个参数的函数,此6个参数可分为

33、实测量d,P,(D)和统计量(C、)两类。风机压差测量方式此测试系统采用法兰取压的标准板孔如图2-2。图2-2标准板孔的法兰取压压差测量传感器由以上论述看出,通过孔板的流体的流量与孔板两端的压力差的平方根成正比。本试验装置中,此压差信号由压差式变送器测量。压差式流量传感器是目前工业上技术最成熟、使用最多的一种,其使用量约占全部流量测量仪表的70-80%。他不仅可以用来显示,而且可以经压差变送器转换成统一的标准信号为20mA(或l-5V)以便送到单元组合仪表及计算机进行上业过程控制。差压式节流装置的特点是:结构简单,使用寿命长,适应能力强,几乎能测量各种工作状态(包括高温、高压)下。本测试装置采

34、用气压传感器C268、RANGE:+/-1000Pa。2.4风机静压测量与传感器压力传感器用来测量管道的静压。压力传感器的种类繁多,本系统采用电容式微压传感器不,其特点如下:(1)测量范围大。金属应变丝的极限一般为l%,而半导体应变片可达20%,电容传感器相对变化量大于100%。(2)灵敏度高。如用比率变压器电桥可测出电容值,其相对变化量可达IE-7(3)动态响应时间短。由于电容式传感器可动部分质量小,因此其固有频率很高,可月J几动态信号的测量。(4)机械损失小。电容式传感器极间相互吸引力非常微小,又不存在摩擦,故其自热坟应极微,可保证电齐式传感器具有较高的精度。结构简单,适应性强。电容式传感

35、器一般使用金属材料做电极,以无机材料做绝缘支撑,故能承受很大的温度变化和各种形式的强辐射作用,适合在恶劣环境中工作。电容式传感器一般可分为三种形式:变截面型、变介质介电常数型、变极板间距型。本系统选用变截面接口静压传感器,其型号为:C268、RANGE:0-50Pa,技术指标如下:作温度:-18-+65测量介质:空气或类似的非导电性气体输入电源:9-3V DC输出电流:4-20mA量程:0-5OPa接线方式为两线式,传感器采用24V直流电源供电,数据采集卜的模拟输入通道采集25O精密电阻两端的电压信号,此电压信号进入到计算机中进行计算。2.5风机工作轮的设计计算与选型初选叶轮大径D2=0.40

36、5m作为设计基准。叶轮如图2-3。风机叶轮周速: 风机全压系数: 图2-3风机叶轮示意图风机的比转数: 风机进口轴向速度: 风机进口当量直径: 风机流量系数: 内孔直径: 其中Nah =8。风机叶轮轮毂外径: 风机工作轮进口直径: 风机工作轮密封处外径: 风机叶片进口直径: 风机叶片进口线速度: 风机叶轮叶片数: 风机叶片厚度: 根据以上计算可以通过风机设计手册选型为 S1064.25 叶轮,并且确定为型轴盘。2.6风机叶片的设计与选型以最小的叶片重量获得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最佳外形设计和结构优化设

37、计的重要性尤为突出,它是实现叶片的材料工艺有效结合的软件支撑。另外,计算机仿真技术的应用也使得叶片的结构与层合板设计更加细化,有力的支持了最佳工艺参数的确定。早在1920年,德国的物理学家Albert Betz 就对风力发电叶片进行过详细的计算。基于当时的计算条件和对风力发电叶片的认识,Betz 在叶片计算时采用了一些假设条件。随着计算机技术发展,计算手段的显著提高,风力发电技术的快速发展,人们对风力发电叶片的认识和理解也在逐渐深入。尤其是近十年来,经过研究人员对风力发电叶片进行的多次现场载荷、声音和动力测量以后,发现叶片的理论预测值与实际记录值有较大的偏离。这可能是由于过多的相信了风洞实验,

38、而对叶片服役期间可能遇到的较强动态环境和湍流条件考虑不足造成的。因此,一些相关人员对当时的叶片计算采用假设条件提出了质疑。流体动力学计算和软件的改进使得研究人员能够更精确的模拟叶片实际的受力状态。在此基础上,进一步改善叶片的空气动力学特征,即使叶片在旋转速度降低5的情况下,捕风能力仍可以提高5;随着叶片旋转速度的降低,叶片运行的噪音大约可以降低3dB。同时,较低的叶片旋转速度要求的运行载荷也较低,旋转直径可以相应的增加。在此项研究的基础上,德国的Enercon 公司将风力发电机的旋转直径由30米增加到33米,复合材料叶片也随着相应的增加。由于叶片长度的增加,叶片转动时扫过的面积增大,捕风能力大

39、约提高25。Enercon 公司还对33米叶片进行了空气动力实验,经过精确的测定,叶片的实际气动效率为56,比按照Betz 计算的最大气动效率低约34个百分点。为此,该公司对大型叶片外形型面和结构都进行了必要的改进:包括为了抑制生成扰流和旋涡,在叶片端部安装“小翼”;为改善和提高涡轮发电机主舱附近的捕风能力,对叶片根茎进行重新改进,缩小叶片的外形截面,增加叶径长度;对叶片顶部和根部之间的型面进行优化设计。在此基础上,Enercon 公司开发出旋转直径71米的2MW 风力发电机组,改进后叶片根部的捕风能力得异提高。 Enercon 公司在4.5MW风力发电机设计中继续采用此项技术,旋转直径为11

40、2米的叶片端部仍安装的倾斜“小翼”,使得叶片单片的运行噪音小于3个叶片(旋转直径为66米)运行使产生的噪音。丹麦的LM公司在61.5米复合材料叶片样机的设计中对其叶片根部固定进行了改进,尤其是固定螺栓与螺栓空周围区域。这样,在保持现有根部直径的情况下,能够支撑的叶片长度可比改进前增加20。另外,LM公司的叶片预弯曲专有技术也可以进一步降低叶片重量和提高产能。风机叶片强度计算因为在此设计的风机叶片与叶轮前后盘的连接为焊接,所以叶片的最大弯矩应产生在梁的两端。叶片受力如图2-4。当叶轮以角速度旋转时单个叶片因本身质量产生的离心力F为: 其中=7.85103 kg/m3为叶轮角速度 b为叶片长=14

41、1mm L为叶片宽度=82mm 为叶片厚度=3mm R为叶片重心到叶轮中心的距离=296mm。C=2 钢的C=86.08n2 。 图2-4风机叶片受力示意图如图叶片的重心假定在叶片工作面的O点,将F分解成沿叶片的法向力F1和切向力F2。叶片在F1和F2的作用下,在相应的方向弯曲。由F2产生的弯曲应力,因叶片的抗弯截面模量大,故可忽略。只计算F1产生的弯曲应力。叶片弯矩如图2-5。 叶片的抗弯截面模量为: 叶片的最大弯矩: 图2-5叶片受力及弯矩图叶片的最大弯曲应力: 2.7风机进出气机壳的设计计算与选型蜗室横截面积当量直径的计算:风机进风管直径: 长度:L=3500mm。风机近风口的选型:根据

42、风机设计手册选择 ST0701042.8风机轴承的设计计算及选型风机轴承:主要包括偏航轴承总成(660PME047)、风叶主轴轴承(24044CC)、变速器轴承、发电机轴承等,轴承的结构形式主要有四点接触球轴承、交叉滚子轴承、圆柱滚子轴承、调心滚子轴承、深沟球轴承等。其中大型偏航轴承总成和风叶主轴轴承技术难度较大,现在基本依靠进口,是风机国产化的难点之一。风机轴承国产化可提高国内轴承工业的设计应用水平,缩小与国外先进水平的差距,促进国内轴承工业的发展和技术进步,另外方面,可以降低风电成本,加快我国新资源和可再生资源的发展。风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大

43、,风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设计、材料、制造、润滑及密封都要进行专门设计。风机轴承技术要点分析(1)偏航轴承总成(660PME047)偏航轴承总成是风机及时追踪风向变化的保证。风机开始偏转时,偏航加速度将产生冲击力矩M=I(I为机舱惯量)。偏航转速越高,产生的加速度也越大。由于I非常大,这样使本来就很大的冲击力成倍增加。另外,风机如果在运动过程中偏转,偏航齿轮上将承受相当大的陀螺力矩,容

44、易造成偏航轴承的疲劳失效。根据风机轴承的受力特点,偏航轴承采用“零游隙”设计的四点接触球轴承,沟道进行特别设计及加工,可以承受大的轴向载荷和力矩载荷。偏航齿轮要选择合适的材料、模数、齿面轮廓和硬度,以保证和主动齿轮之间寿命的匹配。同时,要采取有针对性的热处理措施,提高齿面强度,使轴承具有良好的耐磨性和耐冲击性。风机暴露在野外,因此对该轴承的密封性能有着严格的要求,必须对轴承的密封形式进行优化设计,对轴承的密封性能进行模拟试验研究,保证轴承寿命和风机寿命相同。风机装在40m的高空,装拆费用昂贵,因此必须有非常高的可靠性,一般要求20年寿命,再加上该轴承结构复杂,因此在装机试验之前必须进行计算机模

45、拟试验,以确保轴承设计参数无误。(2)风叶主轴轴承(24044CC)风叶主轴由两个调心滚子轴承支承。由于风叶主轴承受的载荷非常大,而且轴很长,容易变形,因此,要求轴承必须有良好的调心性能。确定轴承内部结构参数和保持架的结构形式,使轴承具有良好性能和长寿命。(3)变速器轴承变速器中的轴承种类很多,主要是靠变速箱中的齿轮油润滑。润滑油中金属颗粒比较多,使轴承寿命大大缩短,因此需采用特殊的热处理工艺,使滚道表面存在压应力,降低滚道对颗粒杂质的敏感程度,提高轴承寿命。同时根据轴承的工况条件,对轴承结构进行再优化设计,改进轴承加工工艺方法,进一步提高轴承的性能指标。(4)发电机轴承发电机轴承采用圆柱滚子轴承和深沟球轴承。通过对这两种轴承的结构设计、加工工艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良好的低噪声性能。(5)轴承装机试验技术研究轴承安装后的实际性能不仅与轴承自身性能有关,而且还与轴承的具体安装使用条件密切相关,因此,要对轴承安装时的配合形式、安装中心的对中性进行研究,使轴承在实际使用中能够得到较好的工作性能。风力发电机配套轴承主要用于偏航系统、变浆系统、变速器和发动机等部位,其中每个机组主要包括

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号