1998全国初中数学联赛试题.doc

上传人:laozhun 文档编号:4061474 上传时间:2023-04-02 格式:DOC 页数:32 大小:1.90MB
返回 下载 相关 举报
1998全国初中数学联赛试题.doc_第1页
第1页 / 共32页
1998全国初中数学联赛试题.doc_第2页
第2页 / 共32页
1998全国初中数学联赛试题.doc_第3页
第3页 / 共32页
1998全国初中数学联赛试题.doc_第4页
第4页 / 共32页
1998全国初中数学联赛试题.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《1998全国初中数学联赛试题.doc》由会员分享,可在线阅读,更多相关《1998全国初中数学联赛试题.doc(32页珍藏版)》请在三一办公上搜索。

1、2013年全国初中数学竞赛试题一、选择题1设非零实数,满足则的值为( )(A) (B) (C) (D)2已知,是实常数,关于的一元二次方程有两个非零实根,则下列关于的一元二次方程中,以,为两个实根的是( )(A) (B)(C) (D)(第3题)3如图,在RtABC中,已知O是斜边AB的中点,CDAB,垂足为D,DEOC,垂足为E若AD,DB,CD的长度都是有理数,则线段OD,OE,DE,AC的长度中,不一定是有理数的为( )(A)OD (B)OE (C)DE (D)AC(第4题)4如图,已知ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且,DCFE是平行四边形,则图中阴影部分

2、的面积为( )(A)3 (B)4 (C)6 (D)85对于任意实数x,y,z,定义运算“*”为:,且,则的值为( )(A) (B) (C) (D)二、填空题(第7题)6设,b是的小数部分,则的值为 7如图,点D,E分别是ABC的边AC,AB上的点,直线BD与CE交于点F,已知CDF,BFE,BCF的面积分别是3,4,5,则四边形AEFD的面积是 8已知正整数a,b,c满足,则的最大值为 9实数a,b,c,d满足:一元二次方程的两根为a,b,一元二次方程的两根为c,d,则所有满足条件的数组为 10小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元开始时他有铅笔和圆珠笔共350支,当天

3、虽然笔没有全部卖完,但是他的销售收入恰好是2013元则他至少卖出了 支圆珠笔三、解答题11如图,抛物线,顶点为E,该抛物线与轴交于A,B两点,与轴交于点C,且OBOC3OA直线与轴交于点D求DBC-CBE12设的外心,垂心分别为,若共圆,对于所有的,求所有可能的度数13设,是素数,记,当时,能否构成三角形的三边长?证明你的结论14如果将正整数M放在正整数m左侧,所得到的新数可被7整除,那么称M为m的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数)求正整数n的最小值,使得存在互不相同的正整数,满足对任意一个正整数m,在中都至少有一个为m的魔术数

4、中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分)(第1题图)1如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为( ) (A)2c-a (B)2a-2b (C)-a (D)a2如果正比例函数y = ax(a 0)与反比例函数y =(b 0 )的图象有两个交点,其中一个交点的坐标为(3,2),那么另一个交点的坐标为( )(A)(2,3) (B)(3,2) (C)(2,3) (D)(3,2)3如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是( ) (A)1 (B) (C) (D)4小倩和小玲每人都有若干面值为

5、整数元的人民币小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是( )(A)1 (B)2 (C)3 (D)45一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是( )(A) (B) (C) (D)二、填空题(共5小题,每小题7分,共35分)6按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是 .(第6题图)(第

6、7题图)7如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则DMN的面积是 .8如果关于x的方程x2+kx+k23k+= 0的两个实数根分别为,那么 的值为 92位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m的值为 .10如图,四边形ABCD内接于O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BFEC,并与EC的延长线交于点F. 若AE = AO,

7、BC = 6,则CF的长为 .三、解答题(共4题,每题20分,共80分)11已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于求的取值范围12如图,O的直径为,O 1过点,且与O内切于点为O上的点,与O 1交于点,且点在上,且,BE的延长线与O 1交于点,求证:BOC(第12题图)13已知整数a,b满足:ab是素数,且ab是完全平方数. 当a2012时,求a的最小值.14求所有正整数n,使得存在正整数,满足,且.2011年全国初中数学联赛决赛试卷一、选择题(本题满分42分,每小题7分)1一个凸多边形的每一个内角都等于150,则这个凸多边形所有对角线的条数总共有( )A42条 B54

8、条 C66条 D78条2如图,矩形ABCD的对角线相交于O,AE平分BAD交BC于E若CAE15,则BOE( )A30 B45 C60 D753设方程的两根是c,d,则方程的根分别是( )Aa,b Ba,b Cc,d Dc,d4若不等式有解,则实数a的最小值是( )A1 B2 C4 D65若一个三角形的任意两条边都不相等,则称它为“不规则三角形”用一个正方体上的任意三个顶点构成的所有三角形中,“不规则三角形”的个数是( )A18 B24 C30 D366不定方程的正整数解(x,y)的组数是( )A0组 B2组 C4组 D无穷多组二、填空题(本大题满分28分,每小题7分)本题共有4小题,要求直接

9、将答案写在横线上1二次函数的图象关于直线x=1对称,则y的最小值是_2已知,则的值为_3已知ABC中,AB,BC6,CA,点M是BC的中点,过点B作AM延长线的垂线,垂足为D,则线段BD的长度是_4一次棋赛,有n个女选手和9n个男选手参赛,每位选手都与其余10n1个选手各对局一次计分方式为:胜者得2分,负者得0分,平局各得1分比赛结束后统计发现,所有男选手的得分总和是所有女选手得分总和的4倍则n的所有可能值是_三、解答题(本题共三小题,第1题20分,第2、3题各25分)1(本题满分20分)已知x1,x2是关于x的一元二次方程的两个实数根,使得成立求实数a的所有可能值2(本题满分25分)抛物线的

10、图象与x轴有两个交点M(x1,0),N(x2,0),且经过点A(0,1),其中0x1AC)的角平分线、高线,M是AD的中点MDH的外接圆交CM于E求证:AEB902010中国教育学会中学数学教学专业委员会1若,则的值为( )(A) (B) (C) (D)2若实数a,b满足,则a的取值范围是 ( )(A)a (B)a4 (C)a或 a4 (D)a43如图,在四边形ABCD中,B135,C120,AB=,BC=,CD,则AD边的长为( )(A) (B) (C) (D)4在一列数中,已知,且当k2时(取整符号表示不超过实数的最大整数,例如,),则等于( )(A) 1 (B) 2 (C) 3 (D)

11、45如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)y轴上一点P(0,2)绕点A旋转180得点P1,点P1绕点B旋转180得点P2,点P2绕点C旋转180得点P3,点P3绕点D旋转180得点P4,重复操作依次得到点P1,P2, 则点P2010的坐标是( ) (A)(2010,2) (B)(2010,) (C)(2012,) (D)(0,2)二、填空题(第5题)6已知a1,则2a37a22a12 的值等于 7一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的

12、正中间过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t 8如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0)若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是 9如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D若CDCF,则 10对于i=2,3,k,正整数n除以i所得的余数为i1若的最小值满足,则正整数的最小值为 三

13、、解答题(共4题,每题20分,共80分)11如图,ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是ABD和ACD的外接圆直径,连接EF. 求证: (第12A题)(第12B题)(第11题) 12如图,抛物线(a0)与双曲线相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线ACx轴,交抛物线于另一点C,求所有满足EOCAOB的点E的坐标.13求满足的所有素数p和正整数m.14从1,2,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数

14、之和都能被33整除?2009中国教育学会中学数学教学专业委员会1已知非零实数a,b 满足 ,则等于( )(A)1 (B)0 (C)1 (D)2 2如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OAa,OBOCOD1,则a等于( )(A) (B) (C)1 (D)23将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为,第二次掷出的点数为,则使关于x,y的方程组 只有正数解的概率为( ) (A) (B) (C) (D) 4如图1所示,在直角梯形ABCD中,ABDC,. 动点P从点B出发,沿梯形的边由BCDA运动. 设点P运动的路程为x,

15、ABP的面积为y. 把y看作x的函数,函数的图像如图2所示,则ABC的面积为( )(A)10 (B)16 (C)18 (D)32 (第4题)图2图1 5关于x,y的方程的整数解(x,y)的组数为( )(A)2组 (B)3组 (C)4组 (D)无穷多组 二、填空题(共5小题,每小题7分,共35分)6一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶 3000 km后报废,行驶一定路程后可以交换前、后轮胎如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km 7已知线段AB的中点为C,以点A为圆心,AB的长为半径作圆,在线段

16、AB的延长线上取点D,使得BDAC;再以点D为圆心,DA的长为半径作圆,与A分别相交于F,G两点,连接FG交AB于点H,则的值为 8已知是满足条件的五个不同的整数,若是关于x的方程的整数根,则的值为 9如图,在ABC中,CD是高,CE为的平分线若AC15,BC20,CD12,则CE的长等于 1010个人围成一个圆圈做游戏游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来若报出来的数如图所示,则报3的人心里想的数是 (第10题)三、解答题(共4题,每题20分,共80分)11已知抛物线与动直线有公共点,且. (1)求实

17、数t的取值范围; (2)当t为何值时,c取到最小值,并求出c的最小值.12已知正整数满足,且,求满足条件的所有可能的正整数的和 13如图,给定锐角三角形ABC,AD,BE是它的两条高,过点作ABC的外接圆的切线,过点D,E分别作的垂线,垂足分别为F,G试比较线段DF和EG的大小,并证明你的结论14n个正整数满足如下条件:;且中任意n1个不同的数的算术平均数都是正整数求n的最大值 “数学周报杯”2008年全国初中数学竞赛试题1已知实数x,y满足:3,y4y23,则y4的值为()(A)7(B)(C)(D)52把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面

18、朝上的编号分别为m,n,则二次函数yx2mxn的图象与x轴有两个不同交点的概率是()(A)(B)(C)(D)3有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有()(A)6条(B)8条(C)10条(D)124已知AB是半径为1的圆O的一条弦,且ABa1以AB为一边在圆O内作正ABC,点D为圆O上不同于点A的一点,且DBABa,DC的延长线交圆O于点E,则AE的长为()(A)a(B)1(C)(D)a5将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有()(A)2种(

19、B)3种(C)4种(D)5种二、填空题(共5小题,每小题6分,满分30分)6对于实数u,v,定义一种运算“*”为:u*vuvv若关于x的方程x*(a*x)有两个不同的实数根,则满足条件的实数a的取值范围是_7小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_分钟8如图,在ABC中,AB7,AC11,点M是BC的中点,AD是BAC的平分线,MFAD,则FC的长为_9ABC中,AB7,BC8,CA9,过ABC的内切圆圆心I作DEBC,分别与AB,AC相交于

20、点D,E,则DE的长为_10关于x,y的方程x2y2208(xy)的所有正整数解为_三、解答题(共4题,每题15分,满分60分)11在直角坐标系xOy中,一次函数ykxb(k0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得OAB的面积值等于OAOB3(1)用b表示k;(2)求OAB面积的最小值12是否存在质数p,q,使得关于x的一元二次方程px2qxp0有有理数根?13是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的ABC?证明你的结论14从1,2,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值2007年全

21、国初中数学竞赛试题参考答案1方程组的解的个数为( )(A)1 (B) 2 (C) 3 (D)42口袋中有20个球,其中白球9个,红球5个,黑球6个现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( )(A) 14 (B) 16 (C)18 (D)203已知为锐角三角形,经过点B,C,且与边AB,AC分别相交于点D,E 若的半径与的外接圆的半径相等,则一定经过的( )(A)内心 (B)外心 (C)重心 (D)垂心4已知三个关于x的一元二次方程,恰有一个公共实数根,则的值为( )(A) 0 (B)1 (C)2 (D)35方程的整数解(x,y)

22、的个数是( ) (A)0 (B)1 (C)3 (D)无穷多二、填空题(共5小题,每小题6分,满分30分)6如图,在直角三角形ABC中,CA4点P是半圆弧AC的中点,连接BP,线段BP把图形APCB分成两部分,则这两部分面积之差的绝对值是 7如图, 点A,C都在函数的图象上,点B,D都在轴上,且使得OAB,BCD都是等边三角形,则点D的坐标为 8已知点A,B的坐标分别为(1,0),(2,0) 若二次函数的图象与线段AB恰有一个交点,则的取值范围是 9如图,则n 10已知对于任意正整数n,都有,则 11(A)已知点M,N的坐标分别为(0,1),(0,1),点P是抛物线上的一个动点(1)判断以点P为

23、圆心,PM为半径的圆与直线的位置关系;(2)设直线PM与抛物线的另一个交点为点Q,连接NP,NQ,求证:12(A)已知a,b都是正整数,试问关于x的方程是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.13(A)已知AB为半圆O的直径,点P为直径AB上的任意一点以点A为圆心,AP为半径作A,A与半圆O相交于点C;以点B为圆心,BP为半径作B,B与半圆O相交于点D,且线段CD的中点为M求证:MP分别与A和B相切11(B)已知抛物线:和抛物线:相交于A,B两点. 点P在抛物线上,且位于点A和点B之间;点Q在抛物线上,也位于点A和点B之间. (1)求线段AB的长;(2)当PQy轴时,求

24、PQ长度的最大值12(B)实数a,b,c满足abc,且,abc1求最大的实数k,使得不等式恒成立13(B)如图,点E,F分别在四边形ABCD的边AD,BC的延长线上,且满足若,的延长线相交于点,的外接圆与的外接圆的另一个交点为点,连接PA,PB,PC,PD求证:(1);(2)14(B)证明:对任意三角形,一定存在两条边,它们的长u,v满足12006年全国初中数学竞赛试题1在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A)36 (B)37 (C)

25、55 (D)902已知,且=8,则a的值等于( ) (A)5 (B)5 (C)9 (D)9 3RtABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴若斜边上的高为h,则( )(A)h1 (B)h=1 (C)1h24一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A)2004 (B)2005 (C)2006 (D)20075如图,正方形ABCD内接于O,点P在劣

26、弧AB上,连结DP,交AC于点Q若QP=QO,则的值为( )(A) (B) (C) (D)二、填空题 (共5小题,每小题6分,满分30分)6已知a,b,c为整数,且ab=2006,ca=2005若ab,则abc的最大值为 7如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c为整数,且b不能被任何质数的平方整除,则的值等于 8正五边形广场ABCDE的周长为2000米甲、乙两人分别从A、C两点同时出发,沿ABCDEA方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上9已知0a1,且满足,则的值等于 (表示不超过x

27、的最大整数)10小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 三、解答题(共4题,每小题15分,满分60分)11已知,为互质的正整数(即,是正整数,且它们的最大公约数为1),且8,(1) 试写出一个满足条件的x; (2)求所有满足条件的x12设,为互不相等的实数,且满足关系式 求a的取值范围13如图,点P为O外一点,过点P作O的两条切线,切点分别为A,B过点A作PB的平行线,交

28、O于点C连结PC,交O于点E;连结AE,并延长AE交PB于点K求证:PEAC=CEKB1410个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中求n的最小值2005年全国初中数学竞赛试卷一、选择题(满分30分)1.如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm,操作:将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;将AFB以BF为折痕向右折过去,得图c,则GFC的面积为( )A.2 B.3 C.4 D.52.若M=3x28xy9y24x6y13(x,y

29、是实数),则M的值一定是( )A.正数 B.负数 C.零 D.整数3.已知点I是锐角ABC的内心,A1,B1,C1分别是点I关于边BC,CA,AB的对称点。若点B在A1B1C1的外接圆上,则ABC等于( )A.30 B.45 C.60 D.904.设,则与A最接近的正整数是( )A.18 B.20 C.24 D.255.在自变量x的取值范围59x60内,二次函数的函数值中整数的个数是( )A.59 B.120 C.118 D.60二、填空题(满分30分)6.在一个圆形的时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)。若现在时间恰好是12点整,则经过_秒后,OAB的面积第一次达到最

30、大。7.在直角坐标系中,抛物线与x轴交于A,B的两点。若A,B两点到原点的距离分别为OA,OB,且满足,则m=_.8.有两幅扑克牌,每幅的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按A,2,3,J,Q,K的顺序排列。某人把按上述排列的两幅扑克牌上下叠放在一起,然后从一到下把第一张丢去,把第二张放在最底层,再把第三张丢去,把第四张放在底层,如此下去,直至最后只剩下一张牌,则所剩的这张牌是_9.已知D,E分别是ABC的边BC,CA上的点,且BD=4,DC=1,AE=5,EC=2。连结AD和BE,它们交于点P。过P分别作PQCA,PRCB,它们分

31、别与边AB交于点Q,R,则PQR的面积与ABC的面积的比是_10.已知x1,x2,x3,x19都是正整数,且x1+x2+x3+x19=59,x12+x22+x32+x192的最大值为A,最小值为B,则A+B的值等于_。三、解答题、(满分60分)11.8 人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机)。其中一辆小汽车在距离火车站15km地方出现故障,此时距停止检票的时间还有42分钟。这时惟一可用的交通工具是另一辆小汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h。试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站

32、。12.如图,半径不等的两圆相交于A、B两点,线段CD经过点A,且分别交两圆于C、D两点。连结BC、BD,设P,Q,K分别是BC,BD,CD的中点。M,N分别是弧BC和弧BD的中点。求证:(1) (2) KPMNQK13. .已知p,q都是质数,且使得关于x的二次方程x2(8p10q)x5pq=0至少有一个正整数根,求所有的质数对(p,q).14.从1,2.,205个共205 个正整数中,最多能取出多少个数。使得对于取出来的数中的任意三个数a,b,c (a,bAD),BC=CD=12, ,若AE=10,则CE的长为 .10实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是

33、.三、解答题(共4题,每小题15分,满分60分)12已知a,b是实数,关于x,y的方程组有整数解,求a,b满足的关系式.11通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中). 当时,图象是抛物线的一部分,当和时,图象是线段.(1)当时,求注意力指标数y与时间x的函数关系式;(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.13

34、D是ABC的边AB上的一点,使得AB=3AD,P是ABC外接圆上一点,使得,求的值.14已知,且,求的最小值. 2003年“TRULY信利杯”全国初中数学竞赛试题1若4x3y6z=0,x+2y7z=0(xyz0),则的值等于 ( ).(A) (B) (C) (D) 2在本埠投寄平信,每封信质量不超过20g时付邮费0.80元,超过20g而不超过40g时付邮费1.60元,依次类推,每增加20g需增加邮费0.80元(信的质量在100g以内)。如果所寄一封信的质量为72.5g,那么应付邮费 ( ).(A) 2.4元 (B) 2.8元 (C) 3元 (D) 3.2元3如下图所示,A+B+C+D+E+F+

35、G=( ). (第3题图)(第4题图)(A)360 (B) 450 (C) 540 (D) 720 4四条线段的长分别为9,5,x,1(其中x为正实数),用它们拼成两个直角三角形,且AB与CD是其中的两条线段(如上图),则x可取值的个数为( ).(A)2个 (B)3个 (C)4个 (D) 6个5某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵(排数3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( ).(A)1种 (B)2种 (C)4种 (D) 0种二、填空题(共5小题,每小题6分,满分30分)6已知,那么 .7若实数x,y,z满足,则xyz的值为

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号