高中物理竞赛辅导原子物理 运动定律.doc

上传人:laozhun 文档编号:4063713 上传时间:2023-04-02 格式:DOC 页数:32 大小:475.50KB
返回 下载 相关 举报
高中物理竞赛辅导原子物理 运动定律.doc_第1页
第1页 / 共32页
高中物理竞赛辅导原子物理 运动定律.doc_第2页
第2页 / 共32页
高中物理竞赛辅导原子物理 运动定律.doc_第3页
第3页 / 共32页
高中物理竞赛辅导原子物理 运动定律.doc_第4页
第4页 / 共32页
高中物理竞赛辅导原子物理 运动定律.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《高中物理竞赛辅导原子物理 运动定律.doc》由会员分享,可在线阅读,更多相关《高中物理竞赛辅导原子物理 运动定律.doc(32页珍藏版)》请在三一办公上搜索。

1、 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系量子力学。本章简单介绍一些关于原子和原子核的基本知识。1.1 原子111、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以粒子轰击重金属箔,即粒子的散射实验,发现绝大多数粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90,有的甚至被弹回,偏转几乎达到18

2、0。1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据粒子散射的实验数据可估计出原子核的大小应在10-14nm以下。1、12、氢原子的玻尔理论1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论:高中物理竞赛光学原子物理学教程 第一讲原子物理电子最终将落入核内,这

3、表明原子是一个不稳定的系统;电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。二、原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐高中

4、物理竞赛原子物理学教程 第一讲原子物理射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即=E2-E1三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r和运动初速率v需满足下述关系:,n=1、2其中m为电子质量,h为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。氢原子的轨道能量即原子能量,为 因圆运动而有 由此可得 根据轨道量子化条件可得: ,n=1,2因,便有 得量子化轨道半径

5、为:,n=1,2式中已将r改记为rn对应的量子化能量可表述为:,n=1,2n=1对应基态,基态轨道半径为 计算可得: =0.529r1也称为氢原子的玻尔半径基态能量为 计算可得: E1=eV。对激发态,有:,n=1,2n越大,rn越大,En也越大,电子离核无穷远时,对应,因此氢原子的电离能为:电子从高能态En跃迁到低能态Em辐射光子的能量为:光子频率为 ,因此氢原子光谱中离散的谱线波长可表述为:,试求氢原子中的电子从第n轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n很大时这一频率近似等于电子在第n轨道上的转动频率。辐射的光波频率即为辐射的光子频率,应有将 代入可得当n很大时,这一频率近似

6、为 电子在第n轨道上的转动频率为:将 代入得 因此,n很大时电子从n第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电子在第n轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在时的极限情形。1、13、氢原子光谱规律1、巴耳末公式研究原子的结构及其规律的一条重要途径就是对光谱的研究。19世纪末,许多科学家对原子光谱已经做了大量的实验工作。第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式,n=3,4,5,式中的为波长,R是一个常数,叫做里德伯恒量,实验测得R的值为1.09677610

7、7。上面的公式叫做巴耳末公式。当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的、四条谱线的波长符合得很好。氢光谱的这一系列谱线叫做巴耳末系。2、里德伯公式1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即n=1,2,3,上式称为里德伯公式。对每一个,上是可构成一个谱线系:,3,4 莱曼系(紫外区),4,5巴耳末系(可见光区),5,6帕邢系(红外区),6,7布拉开系(远红外区),7,8普丰德系(远红外区)以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。这种规律性为原子

8、结构理论的建立提供了条件。1、14、玻尔理论的局限性:玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。此外,对谱线的强度、宽度也无能为力;也不能说明原子是如何组成分子、构成液体个固体的。玻尔理论还存在逻辑上的缺点,他把微观粒子看成是遵守经典力学的质点,同时,又给予它们量子化的观念,失败之处在于偶保留了过多的经典物理理论。到本世纪20年代,薛定谔等物理学家在量子观念的基础上建立了量子力学。彻底摒弃了轨道概念,而代之以几率和电子云概念。例题1:设质子的半径为

9、,求质子的密度。如果在宇宙间有一个恒定的密度等于质子的密度。如不从相对论考虑,假定它表面的“第一宇宙速度”达到光速,试计算它的半径是多少。它表面上的“重力加速度”等于多少?(1mol气体的分子数是个;光速);万有引力常数G取为。只取一位数做近似计算。解:的摩尔质量为2g/mol,分子的质量为 质子的质量近似为 质子的密度 =设该星体表面的第一宇宙速度为v,由万引力定律,得,而 由于“重力速度”【注】万有引力恒量一般取6.67例题2:与氢原子相似,可以假设氦的一价正离子(He)与锂的二价正离子(L)核外的那一个电子也是绕核作圆周运动。试估算(1)He、L的第一轨道半径;(2)电离能量、第一激发能

10、量;(3)赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。解:在估算时,不考虑原子核的运动所产生的影响,原子核可视为不动,其带电量用+Ze表示,可列出下面的方程组:,n=1,2,3,由此解得,并可得出的表达式:,其中米,为氢原子中电子的第度轨道半径,对于He,Z=2,对于Li,Z=3,其中13.6电子伏特为氢原子的基态能,2,3,R是里德伯常数。(1)由半径公式,可得到类氢离子与氢原子的第一轨道半径之比:,(2)由能量公式,可得到类氢离子与氢原子的电离能和第一激发能(即电子从第一轨道激发到第二轨道所需的能量)之比:电离能: ,第一激发能:,。(其中:表示电子处在第二轨道上的能量,表示电子处

11、在第一轨道上的能量)(3)由光谱公式,氢原子赖曼系第一条谱线的波长有:相应地,对类氢离子有: , ,因此 : ,。例3:已知基态He的电离能为E=54.4Ev,(1)为使处于基态的He进人激发态,入射光子所需的最小能量应为多少?(2)He从上述最底激发态跃迁返回基态时,如考虑到该离子的反冲,则与不考虑反冲相比,它所发射的光子波长的百分变化有多大?(离子He的能级En与n的关系和氢原子能级公式类中,可采用合理的近似。)分析:第(1)问应正确理解电离能概念。第(2)问中若考虑核的反冲,应用能量守恒和动量守恒,即可求出波长变化。解:(1)电离能表示He的核外电子脱离氦核的束缚所需要的能量。而题问最小

12、能量对应于核外电子由基态能级跃迁到第一激发态,所以54.440.8eV(2)如果不考虑离子的反冲,由第一激发态迁回基态发阜的光子有关系式:现在考虑离子的反冲,光子的频率将不是而是,为反冲离子的动能,则由能量守恒得 又由动量守恒得 式中是反冲离子动量的大小,而是发射光子的动量的大小,于是,波长的相对变化=由于所以 代入数据即百分变化为0.00000054%1、2 原子核原子核所带电荷为+Ze,Z是整数,叫做原子序数。原子核是由质子和中子组成,两者均称为核子,核子数记为A,质子数记为Z,中子数便为A-Z。原子的元素符号记为X,原子核可表述为,元素的化学性质由质子数Z决定,Z相同N不同的称为同位素。

13、在原子物理中,常采用原子质量单位,一个中性碳原子质量的记作1个原子单位,即lu=。质子质量:中子质量:电子质量:121、结合能除氢核外,原子核中Z个质子与(A-Z)个中子静质量之和都大于原子核的静质量,其间之差:称为原子核的质量亏损。式中、分别为质子、中子的静质量。造成质量亏损的原因是核子相互吸引结合成原子核时具有负的能量,这类似于电子与原子核相互吸引力结合成原子时具有负的能量(例如氢原子处于基态时电子轨道能量为-13.6eV)。据相对论质能关系,负能量对应质量亏损。质量亏损折合成的能量:称为原子核的结合能,注意结合能取正值。结合能可理解成为了使原子核分裂成各个质子和中子所需要的外加你量。称为

14、核子的平均结合能。122、天然放射现象天然放射性元素的原子核,能自发地放出射线的现象,叫天然放射现象。这一发现揭示了原子核结构的复杂性。天然放射现象中有三种射线,它们是:射线:速度约为光速的1/10的氦核流(),其电离本领很大。射线:速度约为光速的十分之几的电子流(),其电离本领较弱,贯穿本领较弱。射线:波长极短的电磁波,是伴随着射线、射线射出的,其电离本领很小,贯穿本领最强。123、原子核的衰变放射性元素的原子核放出某种粒子后,变成另一种新核的现象,叫做原子核的衰变,衰变过程遵循电荷守恒定律和质量守恒定律。用X表示某种放射性元素,z表示它的核电荷数,m表示它的质量数,Y表示产生的新元素,中衰

15、变规律为:衰变:通式例如衰变:通式例如衰变:通式(射线伴随着射线、射线同时放出的。原子核放出射线,要引起核的能量发生变化,而电荷数和质量数都不改变)124、衰变定律和半衰期研究发现,任何放射性物质在单独存在时,都遵守指数衰减规律这叫衰变定律。式中是t=0时的原子核数目,N(t)是经时间t后还没有衰变的原子核的数目,叫衰变常数,对于不同的核素衰变常数不同。由上式可得:式中代表在时间内发生的衰变原子核数目。分母N代表t时刻的原子核总数目。表示一个原子核在单位时间内发生衰变的概率。不同的放射性元素具有不同的衰变常数,它是一个反映衰变快慢的物理量,越大,衰变越快。半衰期表示放射性元素的原子核有半数发生

16、衰变所需的时间。用T表示,由衰变定律可推得:半衰期T也是反映衰变快慢的物理量;它是由原子核的内部因素决定的,而跟原子所处的物理状态或化学状态无关;半衰期是对大量原子核衰变的统计规律,不表示某个原子核经过多长时间发生的衰变。由、式则可导出衰变定律的另一种形式,即(T为半衰期,t表示衰变的时间,表示衰变前原子核的总量,N表示t后未衰变的原子核数)或(为衰变前放射性物质的质量,M为衰变时间t后剩余的质量)。1、2、5、原子核的组成用人工的方法使原子核发生变化,是研究原子核结构及变化规律的有力武器。确定原子核的组成有赖于质子和中子的发现。1919年,卢瑟福用粒子轰击氮原子核而发现了质子,这个变化的核反

17、应方程:1932年,查德威克用粒子轰击铍原子核而发现了中子,这个变化的核反应方程是:通过以上实验事实,从而确定了原子核是由质子和中子组成的,质子和中子统称为核子。某种元素一个原子的原子核中质子与中子的数量关系为:质子数=核电荷数=原子序数中子数=核质量数-质子数具有相同质子数不同中子数的原子互称为同位素,利用放射性同位素可作“示踪原子”,用其射线可杀菌、探伤、消除静电等。1、2、6、核能核能原子核的半径很小,其中质子间的库仑力是很大的。然而通常的原子核却是很稳定的。这说明原子核里的核子之间一定存在着另一种和库仑力相抗衡的吸引力,这种力叫核力。从实验知道,核力是一种强相互作用,强度约为库仑力的确

18、100倍。核力的作用距离很短,只在的短距离内起作用。超过这个距离,核力就迅速减小到零。质子和中子的半径大约是,因此每个核子只跟它相邻的核子间才有核力的作用。核力与电荷无关。质子和质子,质子和中子,中子和中子之间的作用是一样的。当两核子之间的距离为时,核力表现为吸力,在小于时为斥力,在大于10fm时核力完全消失。质能方程爱因斯坦从相对论得出物体的能量跟它的质量存在正比关系,即这个方程叫做爱因斯坦质能方程,式中c是真空中的光速,m是物体的质量,E是物体的能量。如果物体的能量增加了E,物体的质量也相应地增加了m,反过来也一样。E和m之间的关系符合爱因斯坦的质能方程。质量亏损原子核由核子所组成,当质子

19、和中子组合成原子核时,原子核的质量比组成核的核子的总质量小,其差值称为质量亏损。用m表示由Z个质子、Y个中子组成的原子核的质量,用和分别表示质子和中子的质量,则质量亏损为:原子核的结合能和平均结合能由于核力将核子聚集在一起,所以要把一个核分解成单个的核子时必须反对核力做功,为此所需的能量叫做原子核的结合能。它也是单个核子结合成一个核时所能释放的能量。根据质能关系式,结合能的大小为:原子核中平均每个核子的结合能称为平均结合能,用N表示核子数,则:平均结合能=平均结合能越大,原子核就越难拆开,平均结合能的大小反映了核的稳定程度。从平均结合能曲线可以看出,质量数较小的轻核和质量数级大的重核,平均结合

20、能都比较小。中等质量数的原子核,平均结合能大。质量数为5060的原子核,平均结合能量大,约为8.6MeV。127、核反应原子核之间或原子核与其他粒子之间通过碰撞可产生新的原子核,这种反应属于原子核反应,原子核反应可用方程式表示,例如即为氦核(粒子)轰击氮核后产生氧同位素和氢核的核反应,核反应可分为如下几类(1)弹性散射:这种过程,出射粒子就是入射粒子,同时在碰撞过程中动能保持不变,例如将中子与许多原子核碰撞会发生弹性散射。(2)非弹性散射:这种过程中出射粒子也是原来的入射粒子,但在碰撞过程中粒子动能有了变化,即粒子和靶原子核发生能量转移现象。例如能量较高的中子轰击原子核使核激发的过程。(3)产

21、生新粒子:这时碰撞的结果不仅能量有变化,而且出射粒子与入射粒子不相同,对能量较大的入射粒子,核反应后可能出现两个以上的出射粒子,如合成101号新元素的过程。(4)裂变和聚变:在碰撞过程中,使原子核分裂成两个以上的元素原子核,称为裂变,如铀核裂变裂变过程中,质量亏损0.2u,产生巨大能量,这就是原子弹中的核反应。引起原子核聚合的反应称为聚变反应,如氢弹就是利用氘、氘化锂等物质产生聚变后释放出巨大能量发生爆炸的。核反应中电荷守恒,即反应生成物电荷的代数和等于反应物电荷的代数和。核反应中质量守恒,即反应生成物总质量等于反应物总质量。这里的质量指相对论质量,相对论质量m与相对论能量E之间的关系是因此质

22、量守恒也意味着能量守恒。核反应中质量常采用原子质量单位,记为u.lu相当于931.5MeV。核反应中相对论质量守恒,但静质量可以不守恒。一般来说,反应生成物总的静质量少于反应物总的静质量,或者说反应物总的静质量有亏损。亏损的静质量记为m,反应后它将以能量形式释放出来,称之为反应能,记为E,有需要注意的是反应物若有动能,其相对论质量可大于静质量,但在算反应能时只计静质量。反应能可以以光子形式向外辐射,也可以部分转化为生成物的动能,但生成物的动能中还可以包含反应物原有的动能。下面讨论原子核反应能的问题:在所有原子核反应中,下列物理量在反应前后是守恒的:电荷;核子数;动量;总质量和联系的总能量等(包

23、括静止质量和联系的静止能量),这是原子核反应的守恒定律。下面就质量和能量守恒问题进行分析。设有原子核A被p粒子撞击,变为B和q。其核反应方程如下:A+pB+q上列各核和各粒子的静质量M和动能E为反应前反应后根据总质量守恒和总能量守恒可得由此可得反应过程中释放的能量Q为:PpPpPbAPq此式表示,反应能Q定义为反应后粒子的动能超出反应前粒子的动能的差值。这也等于反应前粒子静质量超过反应后粒子的静质量的差值乘以。所以反应能Q可以通过粒子动能的测量求出,也可以由已知的粒子的静质量来计算求出。下面来讨论怎样由动能来求出Q。设A原子核是静止的。由能量守恒可得根据反应前后动量守恒得式中为反应前撞击粒子的

24、动量,和是反应后新生二粒子的动量。上式可改为标量由于,上式可改为从上式求出,代入中得从上式中的质量改为质量数之比可得:如果事先测知,再测出和,即可算得Q。例1 已知某放射源在t=0时,包含个原子,此种原子的半衰期为30天(1)计算时,已发生衰变的原子数;(2)确定这种原子只剩下个的时刻。解: 衰变系数与半衰期T的关系为衰变规律可表述为:。(1)时刻未衰变的原子数为:已发生衰变的原子数便为:(2)时刻未发生衰变的原子数为:由此可解得:=399天例2 在大气和有生命的植物中,大约每个碳原子中有一个原子,其半衰期为t=5700年,其余的均为稳定的原子。在考古工作中,常常通过测定古物中的含量来推算这一

25、古物年代。如果在实验中测出:有一古木碳样品,在m克的碳原子中,在t(年)时间内有n个原子发生衰变。设烧成木炭的树是在T年前死亡的,试列出能求出T的有关方程式(不要求解方程)。解: m克碳中原有的原子数为,式中为阿伏加德罗常数。经过T年,现存原子数为(1)在T内衰变的原子数为(2)在(1)、(2)二式中,m、T和均为已知,只有n和T为未知的,联立二式便可求出T。例3.当质量为m,速度为的微粒与静止的氢核碰撞,被氢核捕获(完全非弹性碰撞)后,速度变为;当这个质量为m,速度为的微粒与静止的碳核做对心完全弹性碰撞时,碰撞后碳核速度为,今测出,已知,求此微粒质量m与氢核质量之比为多少?解: 根据题意有,

26、即有(1)又因 (2)(3)由(2)式得(4)由(3)式得(5)由(4)、(5)式得(6)(6)m(4)得所以。此微粒的质量等于氢核的质量。运动定律3.1牛顿定律311、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。这是牛顿第一定律的内容。牛顿第一定律是质点动力学的出发点。物体保持静止状态或匀速直线运动状态的性质称为惯性。牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。无论是静止还是匀速直线运动状态,其速度都是不变的。速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律

27、指出了力是改变物体运动状态的原因。牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。简称惯性系。相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相对惯性系必作变速运动,地球是较好的惯性系,太阳是精度更高的惯性系。312牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:(3)理解要点牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。在应用该定律处理物体在二维平面或三维空

28、间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式牛顿第二定律反映了力的瞬时作用规律。物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。F1F2图3-1-1当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。这个结论称为力的独立作用原理。牛顿第二定律阐述了物体的质量是惯性大小的量度,公式反映了对同物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物

29、体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。牛顿第二定律的数学表达式定义了力的基本单位;牛顿(N)。因为,故,当定义使质量为1kg的物体产生加速度的作用力为1N时,即1N=时,k=1。由于力的单位1N的规定使牛顿第二定律公式中的k=1,由此所产生的单位制即我们最常用的国际单位制。在惯性参考系中,公式中的ma不是一个单独的力,更不能称它是什么“加速力”,它是一个效果力,只是在数值上等于物体所受的合外力。F图3-2-1对一个质点系而言,同样可以应用牛顿第二定律。如果这个质量系在任意的x方向上受的合外力为,质点

30、系中的n个物体(质量分别为)在x方向上的加速度分别为,那么有这就是质点系的牛顿第二定律。313、牛顿第三定律(1)定律内容:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在一条直线上。(2)数学表达式:(3)理解要点牛顿第三定律揭示了物体相互作用的规律,自然界中的力的作用都是相互的,任何一个物体既为受力体,则它一定就是施力体。相互作用力必定是同一性质的力,即如果其中一个力是摩擦力,则它的反作用力也一定是摩擦力。两个相互作用力要与一对平衡力区分清楚。这个相互作用力是指的性质力。对于效果力不一定能找到“整体”的反作用力,如有人说向心力的反作用力就是离心力。这是错误的,因为向心力往往是由

31、多个力作用是共同效果,其中每个力都有其各自的反作用力,故向心力这个合力就不一定有一个所谓反作用力。314、关于参照系的问题(1)惯性参照系:牛顿第一定律实际上又定义了一种参照系,在这个参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态,这样的参照系就叫做惯性参照系,简称惯性系。由于地球在自转的同时又绕太阳公转,所以严格地讲,地面不是一个惯性系。在一般情况下,我们可不考虑地球的转动,且在研究较短时间内物体的运动,我们可以把地面参照系看作一个足够精确的惯性系。(2)非惯性参照系:凡牛顿第一定律不成立的参照系统称为非惯性参性系,一切相对于惯性参照系做加速运动的参照系都是非惯性参照系。在考

32、虑地球转动时,地球就是非惯性系。在非惯性系中,物体运动不遵循牛顿第二定律,但在引入“惯性力”的概念以后,就可以利用牛顿第二定律的形式来解决动力学问题了。(关于惯性力的应用在后边将到)。3.2牛顿定律在曲线运动中的应用321、物体做曲线运动的条件物体做曲线运动的条件是,物体的初速度不为零,受到的合外力与初速度不共线,指向曲线的“凹侧”,如图3-2-1,该时刻物体受到的合外力F与速度的夹角满足的条件是0180。322、圆周运动物体做匀速圆周运动的条件是,物体受到始终与速度方向垂直,沿半径指向圆心,大小恒定的力的作用。由牛顿第二定律可知,其大小为 。在变速圆周运动中,合外力在法线方向和切线方向都有分

33、量,法向分量产生向心加速度。切向分量产生切向加速度。323、一般曲线运动与变速圆周运动类似,在一般曲线运动中,合外力在法线方向和切线方向都有分量,法向分量的大小为R为曲线在该处的曲率半径,切向分量的大小为3.3 惯性力应用牛顿定律时,选用的参照系应该是惯性系。在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,引入惯性力的概念,引入的惯性力必须满足式中是质点受到的真实合力,是质点相对非惯性系的加速度。真实力与参照系的选取无关,惯性力是虚构的力,不是真实力。惯性力不是自然界中物质间的相互作用,因此不属于牛顿第三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力331平动加速系

34、统中的惯性力设平动非惯性系相对于惯性系的加速度为。质点相对于惯性系加速度,由相对运动知识可知,质点相对于平动非惯性系的加速度质点受到的真实力对惯性系有对非惯性系得 平动非惯性系中,惯性力由非惯性系相对惯性系的加速度及质点的质量确定,与质点的位置及质点相对于非惯性系速度无关。332、匀速转动系中的惯性力Om图331如图331,圆盘以角速度绕竖直轴匀速转动,在圆盘上用长为r的细线把质量为m的点系于盘心且质点相对圆盘静止,即随盘一起作匀速圆周运动,以惯性系观察,质点在线拉力作用下做匀速圆周运动,符合牛顿第二定律以圆盘为参照系观察,质点受力拉到作用而保持静止,不符合牛顿定律要在这种非惯性系中保持牛顿第

35、二定律形式不变,在质点静止于此参照系的情况下,引入惯性力为转轴向质点所引矢量,与转轴垂直,由于这个惯性力的方向沿半径背离圆心,通常称为惯性离心力由此得出:若质点静于匀速转动的非惯性参照系中,则作用于此质点的真实力与惯性离心力的合力等于零惯性离心力的大小,除与转动系统的角速度和质点的质量有关外,还与质点的位置有关(半径),必须指出的是,如果质点相对于匀速转动的系统在运动,则若想在形式上用牛顿第二定律来分析质点的运动,仅加惯性离心力是不够的,还须加其他惯性力。如科里奥里力,科里奥利力是以地球这个转动物体为参照系所加入的惯性力,它的水平分量总是指向运动的右侧,即指向相对速度的右侧。例如速度自北向南,

36、科里奥利力则指向西方。这种长年累月的作用,使得北半球河流右岸的冲刷甚于左岸,因而比较陡峭。双轨铁路的情形也是这样。在北半球,由于右轨所受压力大于左轨,因而磨损较甚。南半球的情况与此相反,河流左岸冲刷较甚,而双线铁路的左轨磨损较甚。由于这个过程极为复杂,涉及微分知识及坐标系建立,这里就不进一步讨论了。333、用实验方法证明在非惯性系中加入惯性力的必要性。图332在一列以加速度做直线运动的车厢里,有一个质量为m的小球,放在光滑的桌面上,如图3-3-2所示,相对于地面惯性系来观测,小球保持静止状态,小球所受合外力为零,符合牛顿运动定律,相对于非惯性系的车厢来观测,小球以加速度向后运动,而小球没有受到

37、其它物体对他的力的作用,牛顿运动定律不再成立。不过,车厢里的人可以认为小球受到一向后的力,把牛顿定律写为。这样的力不是其它物体的作用,而是参照系是非惯性系所引起的,称为惯性力如果一非惯性系以加速度相对惯性系而运动,则在此非惯性系里,任一质量为m的物体都受到一惯性力,把惯性力计入在内,在非惯性里也可以应用牛顿定律当汽车拐弯做圆周运动时,相对于地面出现向心加速度,相对于车厢人感觉向外倾倒,常说受到了离心力,正确地说应是惯性离心力,这就是非惯性系中出现的惯性力。ABN图3-3-3如图3-3-3,一物块A放在倾角为的光滑斜面B上,问斜面B必须以多大的加速度运动,才能保持A、B相对静上?可取B作为参照系

38、,A在此参照系中静止。因为B是相对地面有加速度的非惯性参照系,所以要加一个惯性力f=ma,方向水平向右,a的大小等于B相对地面的加速度。由受力分析图可知f=ma=mg3.4应用牛顿运动定律解题的方法和步骤应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。解题的基本步骤如下:(1)选取隔离体,即确定研究对象一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如

39、求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M和m的两物体组成的系统的加速度a,有两种方法,一种是将两物体隔离,得方程为mM图3-4-1另种方法是将整个系统作为研究对象,得方程为显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。(2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢掌握。一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。大小和方向不

40、受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。AFXFY图3-4-2关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能同时取而说它受到三个力的作用。一般情况下选取合力,如物体在斜面上受到重力,一般不说它受到下滑力和垂直面的两个力。在些特殊情况下,物体其合力不能先确定,则可用两分力来代替它,如图3-4-2横杆

41、左端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处理,经过不计摩擦的定滑轮改变了方向后,我们一般仍将绳对两个物体的拉力当作一

42、对相互作用力处理。(3)分析物体运动状态及其变化运用牛顿定律解题主要是分析物体运动的加速度a,加速度是运动学和动力学联系的纽带,经常遇到的问题是已知物体运动情况通过求a而求物体所受的力。图343m1F针对不同的运动形式和运用不同的公式,在分析物体运动状态时有不同的要求。对于静力学的问题,其加速度为零,速度为零或常量;对于牛顿运动定律问题,主要是分析加速度,要注意其瞬时性,匀变速运动可任取一点分析,变加速运动则必须找到对应点分析;如果是运用动量定理或动能定理,则必须分析物体所受的力的冲量或所做的功,还要分析运动始末两态的动量或动能。要注意物体运动的加速度与速度的大小方向的关系,也要注意两者大小不

43、一定同时为零,如竖直上抛的最高点,速度为零加速度不为零,在振动的平衡位置速度最大加速度为零;两者的方向也不一定相同,如加速上升,两者方向相同,减速上升,两者方向相反。图3-4-4对于由几个物体组成的连接体的运动,要分析各个物体的加速度。各个物体的加速度之间的关系的求法是:一般假设各物体初速为零,由公式,再由各物体的位移的比值找出它们加速度之间的关系来。如图3-4-3,显然有,故有,所以 图3-4-4, 故有 如图3-4-5设,我们以地球为参照物,三者的加速度如图所示,为了找出三个加速度大小的关系,我们设由于和的运动,使绳有沿动滑轮边沿的加速度,根据有关的相对运动规律有m1m2m3图3-4-5两

44、式相减消去得到三个加速度之间的关系式为若不知加速度a的方向,则可事先假设加速度的方向,按假设算出来的加速度若为正,则说明假设正确;若计算出来的加速度为负,则不能简单地认为加速度的方向与假设的方向相反,一般情况下,应该换一个方向重新计算,因为运动方向不同时,物体所受的力有可能不同,特别是有摩擦力的时候。(4)建立坐标系通常我们采用惯性坐标系,一般不加申明就以地球为参照物,有时为了方便,采用非惯性坐标系。坐标也有瞬时性,如圆锥摆所建立的坐标就是指某一瞬间的。通常采用直角坐标系,对曲线运动常用自然坐标,即取切向和法向为两坐标轴的方向,切向加速度反映了速度大小的变化,法向加速度反映了速度方向的变化。选取坐标轴,最好能以加速度方向为一轴的方向,这样可以使方程较为简洁;如果由于解题需要而两轴都不与加速度同向,则要注意将加速

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号