高斯定理的简单应用毕业论文.doc

上传人:仙人指路1688 文档编号:4069957 上传时间:2023-04-03 格式:DOC 页数:8 大小:453.50KB
返回 下载 相关 举报
高斯定理的简单应用毕业论文.doc_第1页
第1页 / 共8页
高斯定理的简单应用毕业论文.doc_第2页
第2页 / 共8页
高斯定理的简单应用毕业论文.doc_第3页
第3页 / 共8页
高斯定理的简单应用毕业论文.doc_第4页
第4页 / 共8页
高斯定理的简单应用毕业论文.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《高斯定理的简单应用毕业论文.doc》由会员分享,可在线阅读,更多相关《高斯定理的简单应用毕业论文.doc(8页珍藏版)》请在三一办公上搜索。

1、高斯定理的简单应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧。 关键词:高斯定理;应用;重要定理引言高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高

2、斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。1高斯定理的表述1.1数学上的高斯公式 设空间区域由分片光滑的双侧封闭曲面所围成,若函数在上连续,且有一阶连续函数偏导数,则 11 其中的方向为外发向。11式称为高斯公式1。1.2静电场的高斯定理一半径为的球面包围一位于球心的点电荷,在这个球面上,场强的方向处处垂直于球面,且的大小相等,都是。通过这个球面的电通量为其中是球面积分,等于。从此例中可以看出,通过球面的电通量只与其中的电量有关,与高斯面的半径无关。若将球面变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为。若闭合曲面内是负电荷,则的方向处处与面元取相反,可计算穿

3、过面的电通量为。若电荷在闭合曲面之外,它的电场线就会穿入又穿出面,通过面的电通量为零。 1.3磁场的高斯定理 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为零。这个规律类似于电场中的高斯定理,因此也称为高斯定理。用式子表示: 与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正或者负电荷,穿过闭合面的电通量就不等于零,

4、即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,极和极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零,即磁场是无源场2。 2静电场和磁场中高斯定理的简述2.1静电场的高斯定理静电场中高斯定理的证明主要分以下四种情况:(a)点电荷在球面中心,点电荷的电场强度为球面的电通量为 21(b)点电荷在任意闭曲面外,闭曲面的通量为 22根据高斯公式 23并考虑到在内有连续一阶偏导数,故22式可22式代入23式得(c)点电荷在任意闭曲面内在任意闭曲面内以点电荷为球心作一辅助球面,其法向朝内,根据21式可知点电荷在闭曲面的电通量为零,即: 24其中式24中和大小相等

5、,法向相反。(d)点电荷系在闭曲面内外设闭曲面内的点电荷为;闭曲面外的点电荷为根据上述讨论可得 这就是静电场中的高斯定理3。2.2磁场的高斯定理磁场中高斯定理的证明主要分以下四种情况:(a)电流元在球面中心由磁通量的定义和毕奥萨法尔定律为了方便,把简写为,则可得电流元的磁感应强度对球面的磁通量为因为,所以(b)电流元在任意闭曲面外电流元的磁感应强度对闭曲面的磁通量为 因为,并设,则代入原式得 根据高斯公式 同理可得 (c)电流元在任意闭曲面内以此类推,在闭曲面内,以电流元为球心作一辅助球面,因为所以 (d)电流元在闭曲面上由上述易知,所有的电流元在闭曲面上的磁通量也为零,即这正是磁场的高斯定理

6、4三、 高斯定理在电场中的应用 例题1设一块均匀带正电无限大平面,电荷密度为=9.310-8C/m2,放置在真空中,求空间任一点的场强.解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)带电面右半空间的场强与左半空间的场强,对带电平面是对称的.为了计算右方一点的场强,在左取它的对称点,以为轴线作一圆柱,如图-3所示. 对圆柱表面用高斯定

7、理,图-3 (1) (2) (3)圆柱内的电荷量为 (4)把(2)、(3)、(4)代入(1)得=V/m=5.25103 V/m例题2设有一根无限长块均匀带正电直线,电荷线密度为=5.010-9C/m,放置在真空中,求空间距直线1m处任一点的场强.解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图-4).图-4根据场强的分布

8、,我们以直线为轴作长为,半径为的圆柱体.把圆柱体的表面作为高斯面,对圆柱表面用高斯定理: (1) (2) (3)圆柱内的电荷量为 (4)把(2)、(3)、(4)代入(1)得=V/m=89.96 V/m例题3设有一半径为的均匀带正电球面,电荷为,放置在真空中,求空间任一点的场强.解:由于电荷均匀分布在球面上,因此,空间任一点的的场强具有对称性,方向由球心到的径矢方向(如果带负电荷,电场方向相反),在与带电球面同心的球面上各点的大小相等.根据场强的分布,我们取一半径为且与带电球面同系同心的球面为为高斯面,如图-5所示. 图-5若,高斯面在球壳内,对球面用高斯定理得 因为球壳内无电荷,所以若,高斯面

9、在球壳外,对球面用高斯定理得,故有 由此可知,均匀带电球面内的场强为零,球面外的场强与电荷集中在球心的点电荷所产生的场强相同.四、 高斯定理在电场中的一般应用步骤:(1) 判断电场的分布特点;(2) 合理作出高斯面,使电场在其中对称分布;(3) 找出电场在高斯面内的垂直面积;(4) 分析高斯面内的电荷量;(5) 应用高斯定理求解(). 高斯定理的一个重要应用,是用来计算带电体周围电场的电场强度。实际上,只有在场强分布具有一定的对称性时,才能比较方便应用高斯定理求出场强。步骤:1进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称

10、性、轴对称性、面对称性等);2根据场强分布的特点,作适当的高斯面,要求:待求场强的场点应在此高斯面上,穿过该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量与平行或垂直,与平行时,的大小要求处处相等,使得能提到积分号外面;3计算电通量和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面高斯面。参考文献1 高等数学第二册(第三版)M.北京:高等教育出版社,1996年第3版:234235.2 张丹海、宏小达.简明大学物理(第二版)M.北京:科学出版社,2008年第2版:173176 196200.3 籍延坤.大连铁道学院学报J.2004年9月第25卷第3期:1315.4 梁灿彬、秦光戎等.电磁学(第二版)M.北京:高等教育出版社,2004年第二版:1424 182185.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号