毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc

上传人:文库蛋蛋多 文档编号:4139965 上传时间:2023-04-07 格式:DOC 页数:46 大小:381KB
返回 下载 相关 举报
毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc_第1页
第1页 / 共46页
毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc_第2页
第2页 / 共46页
毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc_第3页
第3页 / 共46页
毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc_第4页
第4页 / 共46页
毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于C51单片机的超声波倒车雷达系统设计.doc(46页珍藏版)》请在三一办公上搜索。

1、基于单片机的超声波倒车雷达系统设计摘要随着我国汽车产业的高速发展,我国开始进入私家车时代,汽车的数量逐年增加,造成公路、街道、停车场、车库等越来越拥挤。汽车驾驶员越来越担心车的安全了,其中倒车就是一个典型。倒车时,驾驶员疲于前瞻后顾,很容易就发生追尾等碰撞事故。因此,增加汽车的后视能力,研制汽车后部探测障碍物的倒车雷达便成为近些年来的研究热点。本文设计的倒车雷达预警系统主要是针对汽车倒车时人无法目测到车尾与障碍物体的距离而设计开发的。该系统将微计算机技术与超声波的测距技术、传感器技术等相结合,可检测到汽车倒车中,其障碍物与汽车的距离,通过LED数码管显示距离,并根据障碍物与车尾距离远近实时发出

2、报警等级。工作时,超声波发射器不断发射出一系列连续脉冲,给测量逻辑电路提供一个短脉冲。最后由信号处理装置对接收的信号依据时间差进行处理,自动计算出车与障碍物之间的距离。本文介绍了基于AT89C51单片机的超声波测距器,其由超声波发射模块、信号接收模块、单片机处理模块、数码显示以及声光告警显示模块等部分组成。文中运用理论分析、计算机仿真等研究手段,完成了倒车测距仪硬件和软件的设计,并在测距算法上进行了改进,使测距速度更快。系统设计中采用了模块设计思想,简化了调试工作量,最终很好完成了超声波测距倒车雷达系统的硬件设计、软件设计及系统调试。关键词:汽车倒车测距仪;超声波;AT89C51 DESIGN

3、 OF ULTRASONIC VEHICLEREVERING SYSTEM WITHULTRASONIC BASEDON MCUAbstractWith the rapid development of Chinas automobile industry, China began to enter into the era of private cars, the car number increases year by year, causing the highway, streets, parking lot, garage, more and more crowded. Car dr

4、ivers are increasingly worried about the safety of the car, the reverse is a typical. Therefore, to increase the ability of the car after depending on and developing the back of my car detection of radar become obstacles back research topic in recent years.In this paper the reverse radar warning sys

5、tem design is mainly directed against the car back to the rear of the car and people cant visual obstacle the distance of the object and the design and development. This system makes the combination of the computer technology and the ultrasonic ranging technology, the sensor technology, etc. It can

6、detect the car back to the obstacles and the automobile distance, through the LED shows distance,and according to the obstacle and thetailstock which far and near sends out real-time warning level.At work, ultrasonic transmitters continuously launch a series of continuous pulse, to logic circuit pro

7、vides a short pulses. Finally by signal processing device of received signal processing according to the time, calculating the distance between the car and the obstacles automatically. This paper introduces the ultrasonic range finder based on AT89C51. It consists of ultrasound module, the signal re

8、ceiving module, SCM processing module, digital display and sound and light alarm display module components.This paper using theoretical analysis, computer simulation research tools, and completed the reverse rangefinderdesign of hardware and software.It is something improved in the measure programme

9、 for measure quickly. A modular design concept was used at the process of designing the system, it simplifies the debugging workload. Ultimately, hardware design, software design and system debugging about the ARR was completed very well.KEY WORDS:Automobile Reversing range finder;Ultrasonic Compute

10、rSimulation;AT89C51目 录1 绪论11.1 选题背景11.2 设计意义11.3 目前国内倒车雷达的发展概况11.4 当前存在的问题32 总体设计方案42.1 模块构建42.2 超声波测距原理52.3 超声波特点52.4 系统方案选择72.5 超声波传感器82.5.1 超声波传感器的原理及结构82.5.2 超声波传感器的频率特性103 系统的硬件设计123.1系统总体方案设计123.2 AT89C51单片机简介123.3 电源部分的设计163.4 控制电路173.5 温度补偿电路173.5 超声波发射和接收电路193.5.1 超声波发射部分193.5.2 超声波接收电路203.

11、6 LED显示模块233.7 语音实时播报电路234 系统软件设计264.1 软件设计要求274.2 超声波测距算法设计274.3 主程序284.4 超声波发送、接收中断程序294.5 显示程序、报警程序30结 论32致 谢33参考文献34附录A 程序清单351 绪论1.1 选题背景随着汽车工业的发展,城市汽车数量迅速增加。尤其是近几年来,我国汽车的拥有量逐年增加,已是汽车消费大国了。人们将汽车作为其日常的生活工具,这也带来了不少的安全隐患。汽车驾驶员也越来越担心车的安全,其中倒车就是一个典型的问题。由于驾驶员无法看见车后的障碍物,倒车时很容易刮伤汽车,甚至发生事故。为了减少因此带来的损失,需

12、要有一种专门的辅助装置帮助司机安全倒车。目前用于辅助司机倒车的装置主要有:语音告警装置、后视系统以及倒车雷达等。语音告警装置用于播放提示语以提醒车后的行人注意避让正在倒车的汽车。这种装置价格便宜,使用方便,其缺点是只能对车后的行人起告警作用,对于其他障碍物则不起作用,所以其应用范围有限。后视系统是由视频捕捉装置和视频播放装置组成,通过后视系统司机可以直观地看到车后的障碍物,消除视觉盲区。由于这类装置的价位较高,目前还没有普遍推广使用。1.2 设计意义随着汽车的迅速增加,停车难已经是不争的事实,狭小的停车场地常常令有车一族无所适从,稍不慎,则闯祸,烦事又烦人。虽然每辆车都有后视镜,但不可避免的都

13、存在一个后视盲区。倒车雷达是汽车泊车或者倒车时的安全辅助装置,能以声音或者更为直观的显示告知驾驶员驾驶车辆周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了使用死角和视线模糊的缺陷,提高驾驶的安全性。倒车雷达的发明是迫在眉睫的,是必不可少的设备。1.3 目前国内倒车雷达的发展概况目前,很多科研机构已对倒车测距技术进行深入研究、开发,国内外也已有相应的产品。经过分析总结,按其工作方式分主要有超声波、红外、激光和毫米波等方法。虽然所用到的技术不完全相同,但基本原理都是通过不同的方法判断车后方障碍物与本车的相对距离,并根据预设置好的危险等级发出相应的指示

14、信号。下面简要分析一下几种方式的特点:超声波方式:超声波是频率大于20kHz 的声波,具有方向性强、能量衰减缓慢、在介质中传播距离远等特点,用于测距计算方法简单,常用于非接触式距离测量,其传感器种类较多,由于超声波指向性强,在传输过程中能量损耗缓慢,反射能力强,经常被用于距离的测量。由于超声波测距的探测距离较短,主要用于倒车雷达等近距离测距1。红外线方式:红外线的波长比可见光长,是肉眼看不见的光,有显著的热效应和较强的穿透云雾的能力。红外线可以人为制造,自然界中也广泛存在,一般的生物都会辐射出红外线,体现出来的宏观效应就是热度。红外线透视和夜视是分别利用了红外线的不同性质。红外线测距系统成本低

15、廉,但是容易受到天气和路边等物体干扰的影响,在恶劣的天气与环境下探测距离仍然不能满足要求。激光方式:激光具有高定向性,能以定向的光束无发散地直线向前传播;单色性好,它可以达到的亮度比太阳光还高几百亿倍;相干性好,激光的频率、振动方向、相位高度一致。因此激光波束近似直线性,很少扩散,波束能量集中,传输距离较远。但它在对气候的适应能力方面具有局限性,因为激光测距方式受恶劣天气、汽车激烈震动、发射镜表面磨损、污染等因素影响,则探测距离减少二分之一至三分之一,降低了实用精度,所以在汽车倒车雷达领域激光测距方式没有得到很好发展。毫米波方式:毫米波是微波的一个波段,频率在30300G,相应波长为110mm

16、。毫米波电子系统具有如下特性:小天线孔径具有较高的天线增益;高跟踪精度和制导精度;不易受电子干扰;不受被测物体表面形状、颜色等的影响;对大气紊流、气涡等具有适应性,并且毫米波雷达的天线也不会因为灰尘等污染而产生较大的误差;低角跟踪时多径效应和地杂波干扰小;多目标鉴别性能好;雷达分辨率高;大气衰减“谐振点”可作保密传输。但其价格昂贵,结构复杂。汽车雷达按照其测距的方向可分为倒车雷达和前置雷达。倒车雷达主要针对当前在拥挤的街道、停车场以及人群当中倒车时时有发生的倒车碰撞事故而设计的。它是在汽车以较低速度倒车行驶时,周期内不停检测车后障碍物到车的距离,当达到一定危险距离时即时给予司机以声与光的形式的

17、警告。由于倒车雷达检测距离比较短,可选择红外线和超声波,而本文就是对超声波倒车雷达的具体分析研究。目前,很多汽车生产商已经开始在生产的汽车中加入超声波倒车雷达。1.4 当前存在的问题超声波倒车雷达运用超声波测距原理结合单片机或IC的智能技术作为一种具有结构简单、智能判断不受可见光限制等特点的汽车倒车安全辅助装置应用到了轿车当中,但现有的倒车雷达还仍然存在如下一些问题2:(1) 最大有效探测距离偏小的问题,等到报警后再减速就很紧张,感到预警时间不充足;(2) 显示滞后性,多数倒车雷达的显示速度因考虑到抗干扰等因素,显示更新的速度约为0.20 4s,算上从倒车雷达发现目标到发出警报将需要1-2s,

18、这时车已经行使了一段距离,这显然存在反应迟钝;(3) 以往关于倒车雷达的研究都采用的是不容易购买到的专用元件作为附加电路,使其难以推广; (4) 主流产品仅仅是独立的控制单元,无法与汽车数字化信息平台接轨。目前我国的整车制造厂和汽车电子电器厂几乎没有涉及到汽车电器网络化设计的领域,选择一个合理的总线实现汽车电器的网络化非常必要3。2 总体设计方案2.1 模块构建按照系统设计要求,超声波倒车测距仪由硬件和软件两部分组成,系统设计采用模块化思想。系统硬件结构分为三个主要部分:测距部分、控制部分和显示报警部分。软件部分按不同功能模块分别进行编程,便于调试和移植。整个系统根据“回波测距”的原理设计的,

19、其结构框图如图2.1所示。显示报警部分控制系统发射模块接收模块语音播报数据显示测距部分控制部分图2.1 倒车测距仪系统结构原理图该设计的应用背景是基于AT89C51的超声信号检测的,因此单片机选择为AT89C51 单片机(AT89C51)发出短暂的40KHz信号,反射后的超声波经超声波接收器作为系统的输入,锁相环对此型号进行技术判断后,把相应的计算结果送到LED显示电路显示,并进行声光报警。2.2 超声波测距原理超声波测距工作原理:超声波测距正是利用超声波的直线传播特点,通过超声波换能器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器

20、收到反射波就立即停止计时,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=ct/2公式中c代表超声波波速4。由于超声波也是一种声波,其声速c与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。图2.3即为超声波测距的具体流程图。定时器显示器振荡器调制器接收检测器电声换能器计时器控制电声换能器图2.3系统总体设计流程图2.3 超声波特点超声波是一种人耳无法听到的、频率一般超过20KHz的声音。超声

21、波的基本特性如下所述:(1)波长与辐射波的传播速度是用频率乘以波长来表示。电磁波的传播速度是m/s,而声波在空气中的传播速度很慢,约为344m/s(20时)。在这种比较低的传播速度下,波长很短,这就意味着可以获得较高的距离和方向分辨率。正是由于这种较高的分辨率特性,才使我们有可能在进行测量时获得很高的精确度。超声波设备的外表面尺寸易于获得精确的辐射。(2)反射要探测某个物体是否存在,只要超声波能够在该物体上得到反射。由于金属、木材、混凝土、玻璃、橡胶和纸等可以反射近乎100的超声波,此我们可以很容易地发现这些物体。由于布、棉花、绒毛等可以吸收超声波,因此很难利用超声波探测到它们。同时,由于不规

22、则反射,通常可能很难探测到表面振动幅度很大的物体。(3)温度效应声波传播的速度C可以用下列公式表示。C=331.5+0.607t(m/s)式中,t=温度()也就是说,声音传播速度随周围温度的变化而有所不同。因此,要精确的测量与某个物体之间的距离时,始终检查周围温度是十分必要的。如图2.4所示,温度越高,声音传播速度越快。图2.4 温度与声速的关系(4)衰减传播到空气中的超声波强度随距离的变化成比例地减弱,这是因为衍射现象所导致的在球形表面上的扩散损失,也是因为介质吸收能量产生的吸收损失。如图2.5所示,超声波的频率越高,衰减率就越高,波的传播距离也就越短。图2.5 声压在不同距离上的衰减特性2

23、.4 系统方案选择目前,汽车倒车测距技术主要有超声波、红外、激光和毫米波。对于各种方法都各自的优缺点,这前面也介绍了,而本系统采用超声波进行测距,不过超声波测距也有几种方案:方案一:取输入脉冲的平均值电压在超声波探测电路中,发射模块不断连续发射频率为40KHz的超声波,同时接收模块将遇到障碍物反射回来的超声波转换成脉冲的平均值电压,该电压与距离成正比,通过A/D转换得到电压的数字信号量,再用查表法得出距离值。其原理是根据超声波在空气传播中的超声波强度随距离的变化成比例地减弱,再将超声波相应的幅值转换成相应的电压值。这种方案需要不断发射超声波,从而增加系统的功耗,并且需要用到一个A/D转换。如果

24、主控芯片不带A/D转换,需要格外增加一块A/D转换芯片,增加成本。并且要事先测量出不同电压值对应的实际距离,制成表格,供程序查表,这也一定程度限制了测量的精度。方案二:时间差测距法超声波测距正是利用超声波的直线传播特点,通过超声波换能器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2这就是所谓的时间差测距法。这种方案不需要不断连续发射超声波,也不需要A/D转换,更重要的是,在不增加硬件的条件

25、下可以把测量精度做到很高。方案一是基于反射回来的超声波强度转换成脉冲的平均值电压,其抗脉冲干扰能力强,但增加了系统的复杂性,同时要增加A/D转换芯片,增加了成本。而方案二是基于时间差的测距原理,不需要A/D转换芯片,对回波的检测、放大、滤波处理较方案一更容易实现。且其测量误差主要取决于计时器的精度,基于成本、实现难度、精度等因素的考虑,本系统选择方案二。2.5 超声波传感器2.5.1 超声波传感器的原理及结构超声波传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。目前常用的超声传感器有两大类,即电声型与流体动力型。电声型主要有:1 压电传感器;2 磁

26、致伸缩传感器;3静电传感器。流体动力性中包括有气体与液体两种类型的哨笛。由于工作频率与应用目的不同,超声传感器的结构形式是多种多样的,并且名称也有不同,例如在超声检测和诊断中习惯上都把超声传感器称作探头,而工业中采用的流体动力型传感器称为“哨”活“笛”。压电式传感器属于超声传感器中电声型的一种。探头有压电晶片、契块、接头等组成,是超声检测中最常用的实现电能和声能相互转换的一种传感器,是超声波检测装置的重要组成部分。压电材料分为晶体和压电陶瓷两类。属于晶体的如石英,铌酸锂等,属于压电陶瓷的有锆钛酸铅,钛酸钡等。其具有下列的特性:把这种材料置于电场之中,它就产生一定的应变;相反,对这种材料施以外力

27、,则由于产生了应变就会在其内部产生一定方向的电场。所以,只要对这种材料加以交变电场,它就会产生交变的应变,从而产生超声振动。因此,用这种材料可以制成超声传感器5。传感器的主要组成部分是压电晶片。当压电晶片受发射电脉冲激励后产生振动,即可发射声脉冲,是逆压电效应。当超声波作用于晶片时,晶片受迫振动引起的形变可转换成相应的电信号,是正压电效应。前者用于超声波的发射,后者即为超声波的接收。超声波传感器一般采用双压电陶瓷晶片制成。这种超声传感器需要的压电材料较少,价格低廉,且非常适用于气体和液体介质中。在压电陶瓷上加有大小和方向不断变化的交流电压时,根据压电效应,就会使压电陶瓷晶片产生机械变形,这种机

28、械变形的大小和方向在一定范围内是与外加电压的大小和方向成正比的。也就是说,在压电陶瓷晶片上加有频率为f0交流电压,它就会产生同频率的机械振动,这种机械振动推动空气等媒介,便会发出超声波。如果在压电陶瓷晶片上有超声机械波作用,这将会使其产生机械变形,这种机械变形是与超声机械波一致的,机械变形使压电陶瓷晶片产生频率与超声机械波相同的电信号。压电式超声波发生器实际上是利用压电晶体的谐振类工作的,超声波发生器内部结构如图2.6所示。图2.6压电式超声波传感器结构它有两个压电晶片的一个共振板,当它的两级外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板的振动,便产生超声

29、波。反之,如果两级间为外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转化为电信号,这时它就成为超声波传感器。压电陶瓷晶片有一个固定的谐振频率,即中心频率f0。发射超声波时,加在其上面的交变电压的频率要与它的固有谐振频率一致。这样,超声传感器才有较高的灵敏度。当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可非常方便的改变其固有谐振频率。利用这一特性可制成各种频率的超声传感器。超声波传感器的内部结构由压电陶瓷晶片、锥形辐射喇叭、底座、引线、金属壳及金属网构成,其中,压电陶瓷晶片是传感器的核心,锥形辐射喇叭使发射和接收超声波能量集中,并使传感器有一定的指向角,金属壳可防止外界

30、力量对压电陶瓷晶片及锥形辐射喇叭的损坏。金属网也是起保护作用的,但不影响发射与接收超声波。2.5.2 超声波传感器的频率特性这里以本设计选用的超声波传感器TCT40-16型探头(如图2.7)为特例加以说明。型号:TCT40-16R/T(直径16mm)1.标称频率(KHz):40KHz2.发射声压at10V(0dB=0.02mPa):117dB3.接收灵敏度at40KHz (0dB=V/ubar):-65dB 图2.7 TCT40-16型探头4 .静电容量at1KHz,1V (PF):200030% TCT40-16R/T声压能级及灵敏度如图2.8 : 图2.8 TCT40-16R/T声压能级及

31、灵敏度由图2.8可以看出40khz处为超声波传感器的中心频率,在此中心频率处,超声波传感器所产生的机械波最强,也就是说40khz处所产生的声压能级最高。而在40khz两侧声压能级迅速衰减。其频率特性曲线如图2.9所示。 图2.9 TCT40-16R/T传感器的频率特性曲线由图2.9知超声波传感器一定要使用非常接近于中心频率40khz的交流电压来激励。3 系统的硬件设计3.1系统总体方案设计本系统基于超声波反射原理利用单片机控制器产生40Khz的方波信号,通过发送模块对方波信号进行功率放大,驱动超声波探头,发射40K超声波。超声波信号在空气中传播至障碍物后发生反射,反射回波经空气传播给超声波接收

32、换能器并转换成电信号,经接收模块滤波、放大、整形后,输入到微控制器的外部中断口,产生中断,通过相应的公式计算出距离,然后将距离值通过LED显示出来。为了减少不同环境下,系统都能达到测量精度的要求,需要对测量数据进行温度补偿,而本系统采用数字化温度传感器DS18B20进行温度取样,用算法对数据进行温度补偿。如图3.1所示为系统总体框图。 图3.1 系统总体框图LED显示模块温度测量模块电源供电模块实时播报模块单片机控制器键盘输入接收模块发送模块超声波障 碍 物3.2 AT89C51单片机简介单片机是本系统的核心元件,它负责各个模块的协调工作,记录超声波发送到遇障碍物后反射回来的时间差,并将这个时

33、间差转化为距离,然后通过LED显示模块把距离显示出来。AT89C51是一种带4KB字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。(1)主要特性:与MCS-51 兼容 4K字节可编程闪烁存储器 寿命:1000写/擦循环数据保留时间:10年全静态工作

34、:0Hz-24Hz三级程序存储器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源 可编程串行通道低功耗的闲置和掉电模式片内振荡器和时钟电路 (2)AT89C51引脚如图3.2管脚说明:VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。图3.2 AT89C51引脚图P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口

35、缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2

36、口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下所示:口管脚 备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数

37、据存储器写选通)P3.7 /RD(外部数据存储器读选通)RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。(3)振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。(4)芯片擦除:整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,

38、并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。3.3 电源部分的设计在各种电子设备中,直流稳压电源是必不可少的组成部分,它是电子设备唯一的能量来源,稳压电源的主要任务是将50Hz 的电网电压转换成稳定的直流电压和电流,从而满足负载的需要,直流稳

39、压电源一般由整流、滤波、稳压等环节组成。其电路图图3.3所示。其中,变压器将交流电源(220V/50Hz)变换为符合整流电路所需要的交流电压;整流电路是具有单方向导电性能的整流器件,将交流电压整流成单方向脉动的直流电压;滤波电路滤去单向脉动直流电压中的交流部分,保留直流成分,尽可能供给负载平滑的直流电压;稳压电路是一种自动调节电路,在交流电源电压波动或负载变化时,通过此电路使直流输出电压稳定7。图3.3 电源电路220V交流电通过电源变压器变换成交流低压电源,再经过桥式整流电路D1D4和滤波电容的整理和滤波,在固定式三端稳压器LM7805的Vin和GND两端形成一个并不十分稳定的直流电压。此直

40、流电压经过LM7805的稳压和电容滤波便在稳压电源的输出端产生了精度高、稳定度好的直接输出电压。如3.3所示的电路为输出电压为+5V、输出的电流1.5A的稳压电源。它由电源变压器,桥式整流电路D1D4,滤波电容C4、C5,防止自激电容C10、C11和一只固定式三端稳压器(7805)组成。3.4 控制电路主控制器主要由单片机AT89C51、振荡器和复位电路三部分组成,它是单片机工作的必要组成部分,又称为单片机最小系统。其中XTAL1和XTAL2外接一个晶体振荡器,采用12MHZ的晶振以获得稳定的时钟频率,减小误差。RST外接一个复位电路,晶体振荡电路为单片机提供时钟控制信号。复位电路采用上电复位

41、方式。电路图如图3.4所示。图3.4 控制电路 3.5 温度补偿电路DS18B20数字式温度传感器是DALLAS公司生产的1Wire,即单总线器件,与传统的热敏传感电阻温度传感器不同,能够直接读出被测温度值,并且可根据实际要求,通过简单编程,实现912位的A/D转换。其具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,十分方便。其测量温度范围在55125之间。引脚图如图3.5。引脚详细功能描述如表3.1。 图3.5 DS18B20引脚图序号名称引脚功能描述1GND地信号2DQ数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源。3VDD可选择的

42、VDD引脚。当工作于寄生电源时,此引脚必须接地。表3.1 DS18B20引脚功能描述实际情况下,温度每上升或者下降 1, 声速将增加或者减少 0.607m /s 。温度对于声速影响很大。本设计温度测量选用的DS18B20数字式温度传感器,因其独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用,无需外部元件,可用数据总线供电电源范围为3.0V至5.5V无需备用电源。它通过输出9位(二进制)数字来直接表示所测量的温度值,温度值是通过DS18B20的数据总线直接输入CPU,无需A/D转换,而且读写指令,温度转换指令都是通过数据总线传入DS18B20。DS18B20数字温度传感器除了

43、具有相当的测量范围和精度外,还具有温度测量精度和不受外界干扰等的优点。其电路连接如图3.6所示。 图3.6温度补偿电路3.5 超声波发射和接收电路3.5.1 超声波发射部分超声波发射电路包括超声波产生电路和超声波发射电路两个部分,超声波换能器选用压电式,可采用软件发生法和硬件发生法产生超声波。前者利用软件产生40KHz的超声波信号,通过输出引脚输入至驱动器,经驱动器驱动后推动探头产生超声波。这种方法的特点是充分利用软件,灵活性好。第二种方法是利用超声波专业发生电路或通用发生电路产生超声波信号,并直接驱动换能器产生超声波。这种方法的优点是无需驱动电路,但缺点是灵活性低。本设计采用第一种方法产生超

44、声波发射信号。利用AT89C51的P1.0口发射40kHz的方波信号后经过74LS04三级放大后输出到超声波换能器,产生超声波。74LS04是一个高速CMOS六反相器,具有放大作用,具有对称的传输延迟和转换时间,而相对于LSTTL逻辑IC,它的功耗减少很多。对于HC类型,其工作电压为26 V,它具有高抗扰度,可以兼容直接输入LSTTL逻辑信号和CMOS逻辑输入等特点。本系统将40KHz方波信号分成两路,分别由74LS04经两次和一次反向放大,从而构成推拉式反向放大。发射电路主要由反向器74LS04和超声波换能器构成,如图3.7所示。单片机P1.0端口输出40KHz方波信号一路经一级反向器后送到

45、超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极。用这种推挽形式将方波信号加到超声波换能器两端,可以提高超声波的发射强度。输出端采用两个反向器并联,用以提高驱动能力,上拉电阻R10、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡的时间。图3.7 超声波发射电路3.5.2 超声波接收电路 超声波接收包括接收探头,信号放大以及波形变换电路三部分,超声波接收探头必须与发送探头相同的型号,否则可能导致接收效果不好甚至不能接收。由于超声波接收探头的信号非常弱,所以必须用放大器放大,放大后的正弦波不能被微处理器处理

46、,所以必须经过波形变换。本次设计为了降低调试难度,减少成本,提供系统可靠性,所以我们采用了一种用在彩色电视机上面的一种红外接收检波芯片CX20106,由于红外遥控的中心频率在38KHz,和超声波的40KHz很接近,所以可以用来做接收电路。CX20106是日本索尼公司的产品,采用单列8引脚的直插式封装,内部包含自动偏置控制电路、前置放大电路、带通滤波、峰值检波、积分比较器、斯密特整形输出电路,配合少量外接元件就可以对38KHz左右的信号的接收与处理,该芯片内部如下图3.8所示: 图3.8 CX20106内部结构前置放大器:它是高增益的放大器,由于超声波在空气中直线传输时,传输距离越大,能量的衰减越厉害,故反射回来的超声波信号的幅值会有很大的变化。为了不使放大器的输出信号过强而产生失真,集成块内部有自动电平限制电路,对前置放大器的增益进行自动限制。通过反馈将放大器设定于适当的状态,再由限制电平电路进行自动控制。限度放大器:当信号太强时为了防止放大器过载,限制高电平振幅,同时也可消除寄生调幅干扰。宽频带滤波器:其频率范

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号