NTC 负 温度系数热敏电阻常识及应用.doc

上传人:laozhun 文档编号:4144127 上传时间:2023-04-07 格式:DOC 页数:3 大小:15KB
返回 下载 相关 举报
NTC 负 温度系数热敏电阻常识及应用.doc_第1页
第1页 / 共3页
NTC 负 温度系数热敏电阻常识及应用.doc_第2页
第2页 / 共3页
NTC 负 温度系数热敏电阻常识及应用.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《NTC 负 温度系数热敏电阻常识及应用.doc》由会员分享,可在线阅读,更多相关《NTC 负 温度系数热敏电阻常识及应用.doc(3页珍藏版)》请在三一办公上搜索。

1、NTC 负 温度系数 热敏电阻常识及应用NTC(负温度系数)热敏电阻常识及应用2010-10-1614:32NTC是负温度系数的英文缩写,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。1.负温度系数热敏电阻器的命名标准。NTC热敏电阻器的种类繁多,形状各异。表1是负温度系数热敏电阻的命名标准,它由四部分构成,其中M表示敏感元件,F

2、表示负温度系数热敏电阻器。有些厂家的产品,在序号之后又加了一个数字,如MF54-1,这个-1也属于序号,通常叫派生序号。表12.负温度系数热敏电阻的主要参数。热敏电阻器的参数颇多,主要有标称阻值、B值范围和额定功率。标称阻值常在热敏电阻上标出。它是指在基准温度为25时的零功率阻值,因此亦作标称电阻值R25。B值范围(K)是反映负温度系数热敏电阻器热灵敏度越高。额定功率是指热敏电阻在环境温度为25、相对湿度为4580%及大气压力为0.871.07bar的大气条件下,长期连续负荷所允许的耗散功率。表2列出了MF11(片状)负温度系数热敏电阻的主要参数。表23.负温度系数热敏电阻的简易测试方法。应用

3、热敏电阻时,必须对它的几个比重要的参数进行测试。一般来说,热敏电阻对温度的敏感性高,所以不宜用万用表来测量它的阻值。这是因为万用表的工作电流比较大,流过热敏电阻器时会发热而使阻值改变。但对于确认热敏电阻能否工作,用万用表也可作简易判断。具体为:将万用表拨到欧姆挡(视标称电阻值定挡位),用鄂鱼夹代替表笔分别夹住热敏电阻器的两脚,记下此时的阻值;然后用手捏住热敏电阻器,观察万用表,会看到随着温度的慢慢升高而指针会慢慢向右移,表明电阻在逐渐减小,当减小到一定数值时,指针停了下来。若环境温度接近体温,用这种方法就不灵,这时可用电路铁靠近热敏电阻器,同样也会看到表针慢慢右移。这样,则可证明这只负温度系数

4、热敏电阻器是好的。用万用表检测负温度系数热敏电阻器时,请注意3点:万用表内的电池必需是新换不久的,而且在测量前应调好欧姆零点;普通万用表的电阻挡由于刻度是非线性的,为了减少误差,读数方法正确与否很重要,即读数时视线正对着表针。若表盘上有反射镜,眼睛看到的表针应与镜子里的影子重合;热敏电阻上的标称阻值,与万用表的读数不一定相等,这是由于标称阻值是用专用仪器在25的条件下测得的,而万用表测量时有一定的电流通过热敏电阻而产生热量,而且环境温度不可能正是25,所以不可避免地产生误差。那么,能否估算出一只热敏电阻器在某一温度时阻值呢?回答是肯定的,方法也很简单:以MF1型负温度系数热敏电阻电阻器为例,查

5、表2便可得知它的电阻温度系数为d25=-2.234.09%/其意是:以基准温度25为起点,温度每升高1,则该热敏电阻器的阻值便增加2.234.09%)。为了简便,可将d25取为-3%/,这样估算就十分方便了:在某一温度t时热敏电阻所具有的电阻值,等于其前一温度的电阻乘以系数0.97(即100%-3%=97%=0.97)。例如,某1只MF11型负温度系数热敏电阻器在25的阻值为250,那么在26时为2500.97=242.5。4.负温度系数热敏电阻的典型应用。第一个应用实例是多点测温仪。如图1所示。R1R5以及表头uA组成测量电桥。其中,R2、R3是电桥的平衡电阻,R1为起始电阻,R4为满刻度电

6、阻。当XP未插入XS中时,表头满刻度,起着校正作用。电位器RP为电桥提供一个稳定的直流电源。R5与表头uA串联,起修正表头刻度和限制流经表头电流的作用。Rt1Rt6为MF11型负温度系数热敏电阻器,分别安装在六个待测温度的场所。S2为安装在监测室内的切换开关。当插头XP插入插座XS中后,XS中的Q与A自动分开,操作拨动开关S2便可测出各点的温度,通过表头uA显示读数。第二个应用实例是温控吊扇。如图2所示。R1、Rt和RP构成测温电路。其中Rt为负温度系数热敏电阻器MF51。IC为时基集成电路NE555,它与R2、C2构成单稳态延时电路。继电器K为执行器件,其触点K直接控制吊扇电动机M电源的通断

7、。C3与VD1VD4以及T构成降压、整流滤波电路,向温控电路提供所需的直流电源。当室温低于设定温度值时,Rt的阻值较大,IC的2脚电位高于1/3电源电压,其输出端IC的3脚为低电平,K处于释放状态,吊扇不工作;当室温高于设定温度时,Rt的阻值下降至某一数值,它与RP的串联电路的电压降低到小于1/3电源电压,于是IC的2脚由高电平变为低电平,IC的3脚此时输出高电平,继电器K吸合,吊扇运转。当室温逐渐下降至设定温度以下时,电路将重复上述过程,从而使室内温度稳定于某一温度值。在图2电路中,调节RP的阻值可改变控制温度。单稳态电路延时时间由R2、C2的取值决定,可按T=1.1R2C2估算,采用图中所示参数,T约为150S。单稳态的作用,是使室温降至设定温度后能延迟一段工作时间,避免吊扇启、停过于频繁。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号