《多路输出直流稳压电源课程设计.doc》由会员分享,可在线阅读,更多相关《多路输出直流稳压电源课程设计.doc(27页珍藏版)》请在三一办公上搜索。
1、 模电课程设计 题 目: 多路输出直流稳压电源的设计仿真与实现 学 院: 信息工程学院 专 业: 通信工程 学 号: 0121103490216 姓 名: 柯一凡 任课教师 : 王晟 2013年1月17日 任务书要求完成的主要任务: (1)设计任务根据技术要求和已知条件,完成对多路输出直流稳压电源的设计、装配与调试。(2)设计要求 要求设计制作一个多路输出直流稳压电源,可将220V/50Hz交流电转换为多路直流稳压电源输出:12V/1A,5V/1A,+5V/3A一组可调正电压。 选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。(用画电路原
2、理图并实现仿真) 安装调试并按规范要求格式完成课程设计报告书。时间安排:1、 2013 年1月17日 至2013年1月21日,完成仿真设计、制作与调试;撰写课程设计报告。 2、 2013 年1月22日提交课程设计报告,进行课程设计验收和答辩。指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日目录1.摘要4abstract.42.课程设计内容及要求52.1设计的初始条件及主要任务52.1.1设计的初始条件52.1.2设计任务要求52.2设计思路53.设计原理63.1电源变压器63.2 整流电路63.3 滤波电路73.4 稳压电路104.电路元件选择134.1集成稳压器的选择:134
3、.1.1输出电压固定的集成稳压器的选择134.1.2输出电压可调的集成稳压器的选择134.2 电源变压器的选择134.3集成整流桥及滤波电容的选择145.整体电路图156.选用仪器清单及其型号167.电路模拟与仿真177.1仿真过程及记录177.2.1参数测试分析207.2.2波形分析208.电路的安装与调试.21 8.1电路安装.21 8.2电路调试.21 8.3参数测量.229.误差分析.2510.心得体会.2611.参考文献.27 1.摘要本次试验从电源出发,利用学过的知识和有关经验,提出一项简单实用的多路直流电源设计方案,也是本次课程设计的目的。经过多方的查阅资料、设计、焊接和调试最终
4、完成电子电路。直流稳压电源是个经济实用并且可靠的一件实物制作。这次实物制作中用到了变压器、电容、二极管、整流桥、电位器、电阻、稳压器等元件,而且达到了预定的要求。最后通过仿真电路达到了电压转换、滤波、稳压输出和可调输出的性能要求。 此次所要设计的电源要求的输出功率较小,为了简化电路并提高电路的稳定性,因此选择集成稳压器的设计思路。本设计中根据任务需要选择五种集成稳压器芯片:LM7812、LM7805、LM7912、LM7905、LM317。 AbstractThis experiment starts from power,we used our knowledge and relevant
5、experience to propose a simple and practical multi-channel DC power supply design,but also the purpose of this course design.After data access, design,welding and debugging,we finally finish the electronic circuit.The DC power supply is an economical and reliable physical production.In this physical
6、 production,we used transformers,capacitors,diodes,rectifier-bridges,potentiometers,resistances,voltage regulators and other components,and reached the predetermined requirements.Finally we reached the performance requirement of voltage conversion,filtering,voltage regulator output and adjustable ou
7、tput with simulation circuit.This power supply to be designed requires small output power,in order to simplify the circuit and to improve the stability of the circuit,therefore we chose integrated voltage regulator design idea.According to the task in the design,we need to select five integrated vol
8、tage regulator chips:LM7812、LM7805、LM7912、LM7905、LM317.2 课程设计内容2.1设计的初始条件及主要任务2.1.1设计的初始条件可选元件:变压器/15W/12V;整流二极管或整流桥若干,电容、电阻、电位器若干;根据需要选择若干三端集成稳压器;交流电源220V,或自备元器件。可用仪器:示波器,万用表,毫伏表2.1.2设计任务要求要求设计制作一个多路输出直流稳压电源,可将220V/50Hz交流电转换为多路直流稳压电源。输出:12V/1A,5V/1A,+5V/3A,一组可调正电压。选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、
9、并画出总体电路原理图,阐述基本原理。(用Proteus画电路原理图并实现仿真)安装调试并按规定格式写出课程设计报告书。2.2设计思路变压电路整流电路滤波电路电源指示部分220V交流输入稳压电路直流电压输出本设计主要分为变压电路、整流电路、滤波电路、稳压电路、电源指示五个部分。变压电路:将交流电网220V的电压变味所需要的电压值。整流电路:将交流电压变成脉动的直流电压。滤波电路:由于经过整流的脉动直流电压还含有较大的纹波,因此需要设计滤波电路加以滤除。稳压电路:在电网电压波动、负载和温度变化时,依然维持输出直流电压稳定。3设计原理3.1电源变压器变压器是变换交流电压、电流和阻抗的器件,它利用电磁
10、感应原理,从一个电路向另一个电路传递电能或传输信号。当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。当N2N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器;当N2N1时感应电动势要比初级所加的电压要低,这种变压器为降压变压器。 变压器的输出功率和输入功率的比值,叫做变压器的效率。当变压器的输出功率P
11、2 于输入功率P1 时,效率 等于100%,变压器将不产生任何损耗,但实际上这种变压器是没有的,变压器传输电能时总要产生损耗。 变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率比就越小,效率也就越高。反之,功率越小,效率也就越低。3.2 整流电路把交流电能转换为直流电能的电路,称为整流电路。整流电路(Rectifier)是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式各种各样,这次电路设计采用单项桥式整流电路。单相桥式整流电路如下图3-2(a)所示,图中Tr为电源变压器,它的作用是将交流电网电压vI变成整流电路要求的交流电压 ,RL是要求直流供
12、电的负载电阻,四只整流二极管D1D4接成电桥的形式,故有桥式整流电路之称。单相桥式整流电路的工作原理可分析如下。为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。在负载上产生一个极性为上正下负的输出电压。其电流通路可用图3-2(a)中实线箭头表示。在v2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出;只能经过二极管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。电流流过RL时产生
13、的电压极性仍是上正下负,与正半周时相同。其电流通路如图3-2(a)中虚线箭头所示。综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。根据上述分析,可得桥式整流电路的工作波形如右图3-1。由图可见,通过负载RL的电流iL以及电压vL的波形都是单方向的全波脉动波形。 图3-1桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利
14、用,效率较高。因此,这种电路在半导体整流电路中得到了颇为广泛的应用。电路的缺点是二极管用得较多,但目前市场上已有整流桥堆出售,如QL51AG、QL62AL等,其中QL62AL的额定电 流为2A,最大反向电压为 25V1000V。故单相桥式整流电路常画成图3-2(b)所示的简化形式。 (a) (b)图3-23.3 滤波电路滤波电路用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容、电感组合而成的各种复式滤波电路。常用的结构如下图3-3所示。 C型滤波电路 倒L型滤波电路 型滤波电路图 3-3由于电抗元件在电路中有储能作用,并联的电容器
15、C在电源供给的电压升高时,能把部分能量存储起来,而当电源电压降低时,就把能量释放出来,使负载电压比较平滑,电容C具有平波的作用;与负载串联的电感L,当电源供给的电流增加(由电源电压增加引9起)时,它把能量存储起来,而当电流减小时,又把能量释放出来,使负载电流比较平滑,即电感L也有平波作用。滤波电路的形式很多,为了掌握它的分析规律,把它分为电容输入式(电容器C接在最前面,如图3-3中的(a)、(c)和电感输入式(电感器L接在最前面,如图3-2中的(b)。前一种滤波电路多用于小功率电源中,而后一种滤波电路多用于较大功率电源中(而且当电流很大时仅用一电感器与负载串联)。这次电路设计中采用C型滤波电路
16、。下图3-4为单相桥式整流、电容滤波电路。在分析电容滤波电路时,要特别注意电容器两端电压vC对整流元件导电的影响,整流元件只有受正向电压作用时才导通,否则便截止。 图3-4 负载RL未接入(开关S断开)时的情况:设电容器两端初始电压为零,接入交流电源后,当v2为正半周时,v2通过D1、D3向电容器C充电;v2为负半周时,经D2、D4向电容器C充电,充电时间常数为其中Rint包括变压器副绕组的直流电阻和二极管D的正向电阻。由于Rint一般很小,电容器很快就充电到交流电压v2的最大值 ,极性如图XX_01所示。由于电容器无放电回路,故输出电压(即电容器C两端的电压vC)保持在 ,输出为一个恒定的直
17、流,如图3-5中wt0(即纵坐标左边)部分所示图 3-5接入负载RL(开关S合上)的情况:设变压器副边电压v2从0开始上升(即正半周开始)时接入负载RL,由于电容器在负载未接入前充了电,故刚接入负载时v2 vC时,二极管D1、D3受正向电压作用而导通,此时v2经二极管D1、D3一方面向负载RL提供电流,另一方面向电容器C充电(接入负载时的充电时间常数tc =( RL|Rint)CRint C很小),vC将如图3-5中的bc段,图中bc段上的阴影部分为电路中的电流在整流电路内阻Rint上产生的压降。vC随着交流电压v2升高到接近最大值 。然后,v2又按正弦规律下降。当v2 vC时,二极管受反向电
18、压作用而截止,电容器C又经RL放电,vC波形如图2中的cd段。电容器C如此周而复始地进行充放电,负载上便得到如图3-5所示的一个近似锯齿波的电压vL = vC,使负载电压的波动大为减小。总之,电容滤波电路简单,负载直流电压VL较高,纹波也较小,它的缺点是输出特性较差,故适用于负载电压较高,负载变动不大的场合。3.4 稳压电路滤波以后虽然纹波因数大大减小,但输出电压还不够稳定,主要是当负载电流或电网波动时,输出电压会随之发生变化,为此还需要加稳压措施。稳压电路的作用是当外界因素(电网电压、负载、环境温度)等发生变化时,使输出直流电压不受影响,而维持稳定的输出。稳压电路一般采用集成稳压器和一些外围
19、元件组成,采用集成稳压器设计的电源具有性能稳定、结构简单等优点。集成稳压器的种类很多,在小功率稳压电源中,普遍使用三端稳压器。 目前,电子设备中常使用输出电压固定的集成稳压器。由于它只有输入、输出和公共引出端,故称之为三端式稳压器。这类集成稳压器的外形图如图3-6所示。78系列输出为正电压,输出电流可达1A,如78L系列和78M系列的输出电流分别为0.1A和0.5A。它们的输出电压分别为5V、6V、9V、12V、15V、18V和24V等7档。和78系列对应的有79系列,它输出为负电压,如79M12表示输出电压为12V和输出电流为0.5A。 图3-6 3-6LM317可调式三端稳压器电源能够连续
20、输出可调的直流电压,不过它只能允许可调的正电压,稳压器内部含有过流,过热保护电路;LM337输出为负的可调电压。采用两个独立的变压器分别和LM317及LM337组装,正输出可调集成稳压器的输出电压范围为:1.23.7V,输出电流可调范围为:0.11.5A。图3-7(a)是应用78L输出固定电压VO的典型电路图。正常工作时,输入、输出电压差应大于23V。电路中接入电容C1、C2是用来实现频率补偿的,可防止稳压器产生高频自激振荡并抑制电路引入的高频干扰。C3是电解电容,以减小稳压电源输出端由输入电源引入的低频干扰。D是保护二极管,当输入端意外短路时,给输出电容器C3一个放电通路,防止C3两端电压作
21、用于调整管的be结,造成调整管be结击穿而损坏。图3-7(b)是扩大78L输出电流的电路,并具有过流保护功能。电路中加入了功率三极管T1,向输出端提供额外的电流IO1,使输出电流IO增加为IO= IO1+ IO2。其工作原理为:在电路中存在关系式VBE1 =VR1 =VCE3。正常工作时,T2、T3截止,电阻R1上的电流产生压降使T1导通,使输出电流增加。若IO过流(即超过某个限额),则IO1也增加,电流检测电阻R3上压降增大使T3导通,导致T2趋于饱和,使T1管基-射间电压VBE1降低,限制了功率管T1的电流IC1,保护功率管不致因过流而损坏。 (a)三端稳压器的典型接法(b) 带过流保护的
22、扩流电路图3-7图3-8所示为三端可调式稳压器的典型应用电路,由LM117和LM137组成正、负输出电压可调的稳压器。为保证空载情况下输出电压稳定,R1和R1不宜高于240W,典型值为(120240)W。电路中的V31(或V21)= VREF =1.2V,R2和R2的大小根据输出电压调节范围确定。该电路输入电压VI分别为25V,则输出电压可调范围为(1.220)V。图 3-84电路元件选择4.1集成稳压器的选择:4.1.1输出电压固定的集成稳压器的选择输出电压固定的集成稳压器有正电源LM7800系列稳压器和负电源LM7900系列稳压器。按LM7800系列输出电压可分为7805(+5V)、780
23、6(+6V)、7809(+9V)、7812(+12V)、7815(+15V)、7818(+18V)、7824(+24V);按输出电流可分为78Lxx表示输出电流100mA、78Mxx表示输出电流500mA、78xx表示输出电流1.5A。负向集成稳压器与正向类似。5由于此次要输出得电压为12V、5V,电流要求均为1A,固选择的芯片为LM7805、LM7812、LM7905、LM7912。4.1.2输出电压可调的集成稳压器的选择可调输出的集成稳压器是在固定输出集成稳压器的基础上发展起来的,这种集成稳压器,在集成芯片的内部,输入电流几乎全部流到输出端,流到公共端的电流非常小,因此可以用少量的外部元件
24、方便的组成精密可调的稳压电路,应用更为灵活。正电源系列的基准电压为1.25V,可在1.25V37V之间连续可调。其内部设有过流、过电压保护和调整管安全工作区保护电路,使用安全可靠,性能比LM7800系列性能更加,而且它的输出电压输出电流均符合要求,所以此次的可调集成稳压器选择LM317。4.2 电源变压器的选择 Uomax+(Ui-Uo)minUiUomin+(Ui-Uo)max其中:(Ui-Uo)min=3V,(Ui-Uo)max=40V 12V+3VUi5V+40V 15VUi445V 在此范围内选择:Ui=22V=Uo1 根据 Uo1=(1.11.2)U2 可得变压的副边电流:U2=U1
25、/1.15=19V所以选择双18V的变压器4.3集成整流桥及滤波电容的选择由于Urm=1.41418=25.452V,I=1A,额定工作电流ID=1A,所以集成整流桥芯片选择KBP307。I=1A。T=0.02s,电路中滤波电容承受的最高电压时1.41418=25.452V所以选择电容的耐压值应该大于34V,所以在可调电压部分选择和固定电压部分都应选择适合的电容因为大容量电解电容有一定的绕制电感分布,易引起自激振荡,形成高频干扰。所以稳压器的输入端并入瓷质小容量电容来抵消电解电容的电感效应和线路的杂波,抑制高频干扰。固在稳压芯片前并入电容,在其后并入电容。为了更好的消除纹波,在输出端前再并入电
26、解电容。 5. 整体电路图6选用仪器清单及其型号名称型号数量备注变压器/18V1二极管1N40074整流桥1电容0.33uf3 电解电容50V/470uF350V/1000uF350V/47uF1稳压集成器Lm31717805和7905各17812和7912各1电阻75和25各1电位器10017. 电路模拟与仿真 7.1仿真过程记录测量输出端的电压。利用仿真旋钮进行仿真,仿真结果如下图所示: (a)5-10 V的最低电压(b)5-10V的最高电压 (c)5V输出端的示数 (d)12V输出端的示数图7-12.在工具箱中单击“虚拟仪器”按钮,在弹出的“Instruments”窗口中选择“OSCIL
27、LOSCOPE(示波器)”,用来观察电路的输出波形,利用仿真旋钮进行仿真。A. 整流波形: 图7-2 整流波形B. 滤波波形:图7-3 滤波波形C. 12V输出波形: 图7-4 12V输出波形D. 5V输出波形:图7-5 5V输出波7.2仿真结果分析7.2.1参数测试分析由直流电压表的示数可知:可调输出端的输出电压最低为5V,最高为10V,符合要求 5V输出端的输出电压分别为+5.01V、-5.02V,符合要求;12V输出端的输出电压分别为+12.0V、-12.0V,符合要求。7.2.2波形分析由示波器的输出波形可知:5V和12V输出端的输出电压比较稳定,5-10 V输出端的输出电压也相对较稳
28、定,他们均接近于直线。图片可能无法显示出真实情况,在电脑上测试时,波形还是有小量的纹波。而整流波形和滤波波形也与理论波形相近8 电路实物的安装与调试8.1电路安装1 按照元件清单购买电路所需元件以及电路板、焊锡丝、插头、导线等。2 将所有元件安装在电路板上,调整整体布局。3 按照规划好的布局焊接元件。先焊电阻、二极管和电位器,接着是电容,最后是稳压集成器,先将稳压集成器和散热片固定在一起再焊接在电路板上。4 按照电路图布线。5 将变压器接入电路,并将变压器和插头连接一起。实物图如下: 图8-18.2电路调试1 检查电路是否连接正确,是否有短路、断路现象。2 在地线中接入一个保险丝,防止电路有问
29、题而损坏变压器。3 连接电源,在确认电路没有问题(电容不发热、保险丝没有断等)后,用万用表测量输出端的输出电压。8.3参数测量(1)+5V 输出端测量:5.06V图8-2 (2) -5V 输出端:-5.02V (3)+12V 输出端:11.8V 图8-3 图8-4(4) -12V 输出端:-11.96V 图8-5 (5)510V输出端:最低为5.0V,最高为10.0V。 图8-6 图8-7 9误差分析导线连接问题连接点的接触问题元件问题测量仪器万用表存在误差几个输出端的输出电压多多少少存在一些误差,有的比仿真值略大,而有的却比仿真略小.不过本次仿真和实物最终参数虽存在一些误差,但还是比较满意以
30、上误差相对较小,在实际应用时影响较小,可忽略.10 心得体会在设计的过程中和同学一起查阅资料,了解到许多课外的知识,也认识到了自己还有许许多多的不足,需要加紧努力,充实自己。在与同学合作的过程中更加深了大家的了解,培养了团队合作的精神与经验。感谢学校给我们这次机会,锻炼了我们的动手能力。通过这次的课程设计,让我加深了对于所学模电知识的理解,真正做到了将理论与实际结合起来,切身体会到了理论与实际的差别。我们在实际中遇到了一些上课和平时学习时没想到的问题。这些问题锻炼了我们的能力,而且也让我们很明确得意识到自己在模电上有很多的知识漏洞,以后应该多钻研一下。11.参考文献1何希才. 常用集成电路应用实例. 北京:电子工业出版社,20072吴友宇. 模拟电子技术基础. 北京:清华大学出版社,20093藏春华. 电子线路设计与应用. 北京:高等教育出版社,20044侯振义. 集成电源技术及应用. 北京:中国电力出版社,20065黄继昌 等.电源专用集成电路及其应用.北京:人民邮电出版社,20066谭海曙. 模拟电子技术实验教程. 北京:北京大学出版社,20087Mark N Horenstein. Microelectronic Circuits and Devices. 2nd ed. New Jersey: Prentice-Hall Inc,1996