PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc

上传人:文库蛋蛋多 文档编号:4192245 上传时间:2023-04-09 格式:DOC 页数:57 大小:1.30MB
返回 下载 相关 举报
PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc_第1页
第1页 / 共57页
PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc_第2页
第2页 / 共57页
PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc_第3页
第3页 / 共57页
PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc_第4页
第4页 / 共57页
PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc》由会员分享,可在线阅读,更多相关《PCM(脉冲编码调制)介绍及PCM编码的原理毕业论文PCM量化13折线.doc(57页珍藏版)》请在三一办公上搜索。

1、PCM(脉冲编码调制)介绍及PCM编码的原理摘 要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。另外,还可以存储,时间标度变换,复杂计算处理等。而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。这里重点讨论模拟信号数字化的基本方法脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PC

2、M的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。关键词:脉冲编码调制 抽样 非均匀量化 编码 译码 AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, it

3、s advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications sys

4、tems, reliability and confidentiality. Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog s

5、ignal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line

6、quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than

7、 uniform quantization Keywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前 言12 PCM原理22.1 引言22.2 抽样(Sampling)32.2.1. 低通模拟信号的抽样定理32.2.2 抽样定理42.2.3. 带通模拟信号的抽样定理72.3 量化(Quantizing)82.3.1 量化原理82.3.2均匀量化102.3.3 非均匀量化112.4 编码(Coding)182.5 译码242.6 PCM处理过程的其他步骤262.7 PCM系统中噪声的

8、影响273 算例分析293.1 无噪声干扰时PCM编码303.2 噪声干扰下的PCM编码36结论42致谢43参考文献44附录451 前 言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。另外,还可以存储,时间标度变换,复杂计算处理等。但自然界中,有些信源是以模拟形式出现的,如话音、图像等。因此在进行数字通信往往需先对信号(模拟的)数字化。模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。这里

9、重点讨论模拟信号数字化的基本方法脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。但是这三个步骤是怎样的完成的呢?我们知道电话语音信号是用脉冲编码体制技术进行编码传输,但是究竟每一步怎样语音信号都有怎样的改变呢?本文将进行详细讲述本论文主要对模拟信号数字化传输过程进行分析仿真,包括脉码调制(Pulse Code Modulation)的原理过程,算例分析等,经过信号调制原理的分析,并在MATLAB7.0编译环境下编写相应程序平台,便于实验的直观分析和数据分析,最后我们得出在相同量化电平级数M下,非均匀量化输出信噪比较均匀量化要小,对于语音信号来说,小信号的出现概

10、率大于大信号的出现概率,非均匀量化的优势将更加明显的结论。通过对脉冲编码调制的分析加深了对语音信号经脉冲编码调制处理过程的理解,锻炼了学生科研与写作能力,为通信原理课程建设提供素材,并为教学提供仿真平台。由于时间的仓促以及本人的水平有限,文中难免有不足之处,恳请各位老师指正,在此不慎感激。2 PCM原理2.1 引言现在的数字传输系统都是采用脉码调制(Pulse Code Modulation) 体制。将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。PCM 对信号每秒钟取样 8000 次;每次取样为 8 个位,总共 64kbps,取样等级的编码有二种标准。PCM有两个标准即E1和T1

11、。我国采用的是欧洲的E1标准。T1的速率是1.544Mbit/s,E1的速率是2.048Mbit/s。脉冲编码调制主要经过3个过程:抽样、量化和编码。抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。下面将PCM脉冲编码调制原理作着重介绍,对这里不再赘述。所谓脉冲编码调制,就是将模拟信号抽样量化,然后将已量化值变换成代码。下面将用一个PCM系统的原理框图简要介绍,原理框图如图2.1所示。抽 样 保 持量化器编码器信道译码器低通滤波器PCM信号输出干扰PCM信号输入模拟信号输出冲激脉冲

12、模拟信号输入图2.1 PCM原理方框图在编码器中由冲激脉冲对模拟信号抽样,得到在抽样时刻上的信号抽样值。这个抽样值仍是模拟量。在它量化之前,通常由保持电路(holding circuit)将其作短暂保存,以便电路有时间对其量化。在实际电路中,常把抽样和保持电路作在一起,称为抽样保持电路。图中的量化器把模拟抽样信号变成离散的数字量,然后在编码器中进行二进制编码。这样,每个二进制码组就代表一个量化后的信号抽样值。图中的译码器的原理和编码过程相反。其中,量化与编码的组合称为模/数变换器(A/D变换器); 译码与低通滤波的组合称为数/模变换器(D/A变换器)。 2.2 抽样(Sampling) 2.2

13、.1. 低通模拟信号的抽样定理模拟信号一般是指在时间上连续的信号,如果在一系列离散点上对该信号抽取样值,则称为抽样。抽样过程可以看作是用周期性单位冲激脉冲和此模拟信号相乘,其结果是一系列周期性的冲激脉冲,脉冲实际有一很窄的宽度,其面积与模拟信号的取值成正比。如果抽样速率足够大,则离散冲激脉冲能够完全代替原模拟信号,即由这些传输的离散冲激脉冲可以恢复出原模拟信号。图2.2 抽样信号例图A/D转换时,抽样间隔越宽,量化越粗,虽然信号数据处理量少,但精度不高,甚至可能失掉信号最重要的特征。 抽样定理:设一个连续模拟信号m(t)中的最高频率 fH,则以间隔时间为T1/(2fH)的周期性冲激脉冲对它抽样

14、时,m(t)将被这些抽样值所完全确定。2.2.2 抽样定理设有一个最高频率小于fH的信号m(t) ,将这个信号和周期性单位冲激脉冲T(t)相乘。T(t)的重复周期为T,重复频率为fs = 1/T。乘积就是抽样信号,它是一系列间隔为T 秒的强度不等的冲激脉冲。 (2.1)这些冲激脉冲的强度等于相应时刻上信号的抽样值。用ms(t) =m(kT)表示此抽样信号序列,如下图2.3所示。图2.3 信号抽样过程令M(f)、DW(f)和Ms(f)分别表示m(t)、dT(t)和ms(t)的频谱。按照频率卷积定理,m(t)dT(t)的傅里叶变换等于M(f)和DW(f)的卷积。ms(t)的傅里叶变换Ms(f)可以

15、写为: (2.2)DW (f)是周期性单位冲激脉冲的频谱,可以求出为 (2.3)利用卷积公式求得: (2.4)由于M(f - nfs)是信号频谱M(f)在频率轴上平移了nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的原信号频谱M(f)相叠加而成。图2.4 信号抽样过程的频谱变化已假设信号m(t)的最高频率小于fH,所以若频率间隔fs 2fH,则Ms(f)中包含的每个原信号频谱M(f)之间互不重叠。这样就能够从Ms(f)中用一个低通滤波器分离出信号m(t)的频谱M(f),也就是能从抽样信号中恢复原信号。恢复原信号的条件是:即抽样频率fs应不小于fH的两倍。这一最低抽样速率2fH称

16、为奈奎斯特速率。与此相应的最小抽样时间间隔1/(2fH)称为奈奎斯特间隔。如果抽样速率小于奈奎斯特速率,则相邻周期频谱间将发生频谱重叠(即信号m(t)中不同频率分量的信号重叠在一起,不可分离),不能分离出原信号频谱M(f)。由Ms(f)的频谱图可知,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号(取出f=0附近的频谱)。实用滤波器的截止边缘不可能做到理想的陡峭。所以,实用的抽样频率fs必须比2fH 大一些。例如,典型电话信号的最高频率通常限制在3400 Hz,而抽样频率通常采用8000Hz。以上讨论均限于频带有限的信号m(t)。严格讲,频带有限的信号并不存在,只要信号存在于

17、时间的有限区间,它就包含无限频率分量。实际上对所有信号,频谱密度函数在较高频率上都要减小,大部分能量由一定频率范围内的分量所携带。因而在实用意义上,信号m(t)可以认为是频带有限的,高频分量所引入的衰减可以忽略不计。2.2.3. 带通模拟信号的抽样定理设带通模拟信号的频带限制在fL和fH之间,如图2.5所示,则信号带宽B = fH -fL。可证,此带通模拟信号所需最小抽样频率fs等于 (2.5)图2.5 带通信号n为商(fH / B)的整数部分,n =1,2,;k为商(fH / B)的小数部分,0 k =0)&x(i)=1/64)&x(i)=1/32)&x(i)=1/16)&x(i)=1/8)

18、&x(i)=1/4)&x(i)=1/2)&x(i)128?C2=1?m512?C3=1?m1024?C4=1C4=0C4=1C4=1C3=0?m256?C2=0m32?C3=0?C3=1?m1024?m16?C4=1C4=0C4=1C1C2C3C4C5C6C7C8编码结束段落起点电平与段内量化间隔确定段内码 所在码段:DuanluoN = (C2C3C4) + 1C4=0是是是是是是是是否否否否否否否否图3.11 编码算法程序流程图图2.11 编码算法程序流程图2.5 译码对于输入的PCM信号,可以看成有限个数字码组,每个码组由八位码元构成,分别是,译码时,先由段落码确定编码所在段落,确定段落

19、起点电平和量化间隔,由段落起点电平加上段内码与相应量化间隔的乘积之和,即得到了抽样信号的绝对值,再由极性码来确定抽样值的正负号: (1)确定段落码DuanluoN(i):即段落码为bin2dec(num2str(f(i,2:4) + 1;(2)确定量化单位LianghuaDanweiN(i): 即量化单位由PAM信号后四位确定 bin2dec(num2str(f(i,5:8);(3)则可以求的译码值Signal_trans(i) :即符号位(sign1 )* (起点电平(Mark(i)) +量化值( Lianghuazhi(i)) * 量化单位(LianghuaDanweiN(i)));译码算

20、法matlab的实现:function code=pcmdecode(f)QidianDianping = 0,16,32,64,128,256,512,1024; %段落起点电平LianghuaJiange = 1,1,2,4,8,16,32,64; %各段落量化间隔len=length(f);LianghuaDanweiN = zeros(1,len);Lianghuazhi = zeros(1,len);Mark = zeros(1,len);Signal_trans = zeros(1,len);for i = 1:lenDuanluoN(i) = bin2dec(num2str(f(

21、i,2:4) + 1;LianghuaDanweiN(i) = bin2dec(num2str(f(i,5:8);Mark(i) = QidianDianping(DuanluoN(i);Lianghuazhi(i) = LianghuaJiange(DuanluoN(i);sign = 1;if(f(i,1) = 0)sign = -1;endSignal_trans(i)=sign*(Mark(i)+Lianghuazhi(i)* LianghuaDanweiN(i);endfor i = 1:lenSignal_trans(i) = Signal_trans(i)/2048;% Sign

22、al_trans(i) = 10 * (Signal_trans(i)/2048);endcode=Signal_trans;译码算法流程图如下图:给定码组C1C2C3C4C5C6C7C8C1=1?Sign=-+1Sign=-1段落码和段落间隔段起点电平及段内量化值m=sign*(段起点电平+段内量化值)结束图2.6 译码程序算法流程图2.6 PCM处理过程的其他步骤由图3-1所示,在整个PCM处理过程中,除了抽样、量化和编码还有码型转换、噪声干扰以及低通滤波,这3个过程在语音信号处理过程中是必不可少的,但是在本文中,由于不是本文所要研究的内容,这里仅作简单的介绍。(1)码型转换码型转换,即信

23、道编码, 是为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。在PCM编码后的码组因信道存在干扰而会出现较大的误差,因此不适合在信道中传输,因此需将二进制码组进行适当的转换,提高传输的可靠性和抗干扰性。信道编码包括包括分组码、卷积码、Turbo码、交织及扰码,本仿真程序使用双极性归零码模拟信道传输。(2)信道干扰噪声以及滤波信道中不可避免存在噪声,因此也就不可避免的存在误码,本文在仿真码型传输时,加入适当随机二进制码,使其适当产生误码,模拟信道噪声的干扰。由于噪声的加入,而噪声的频谱多在高频部分,有用的声音信号都在

24、低频部分,如30Hz-3000Hz处,利用这个原理使用低通滤波器进行滤波,滤除噪声信号,还原出原始信号。由于这些过程不是本文所研究的内容,这里就不在过多介绍,但是在仿真中是绝对不可少的,具体原因会在以下算例分析中予以解说。2.7 PCM系统中噪声的影响 PCM系统中的噪声有两种:加性噪声和量化噪声(1)加性噪声的影响错码分析:一般只需考虑在码组中有一位错码的情况,这因在同一码组中出现两个以上错码的概率非常小,可以忽略。例如,当误码率为Pe = 10-4时(每个码元的平均误码),在一个8位码组中出现一位错码的概率为P1 = 8Pe 8 10-4,而出现2位错码的概率为仅讨论高斯加性白噪声对均匀量化的自然码的影响。可认为码组中出现的错码是彼此独立的和均匀分布的。设码组长度为N 位,误码率为Pe,可证信噪比为: (2.15)在大信噪比条件下,即当22(N+1)Pe

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号