最新电大《复变函数与积分变换》作业答案1.doc

上传人:文库蛋蛋多 文档编号:4195005 上传时间:2023-04-09 格式:DOC 页数:19 大小:2.52MB
返回 下载 相关 举报
最新电大《复变函数与积分变换》作业答案1.doc_第1页
第1页 / 共19页
最新电大《复变函数与积分变换》作业答案1.doc_第2页
第2页 / 共19页
最新电大《复变函数与积分变换》作业答案1.doc_第3页
第3页 / 共19页
最新电大《复变函数与积分变换》作业答案1.doc_第4页
第4页 / 共19页
最新电大《复变函数与积分变换》作业答案1.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《最新电大《复变函数与积分变换》作业答案1.doc》由会员分享,可在线阅读,更多相关《最新电大《复变函数与积分变换》作业答案1.doc(19页珍藏版)》请在三一办公上搜索。

1、复变函数与积分变换作业参考答案习题1:4、计算下列各式(1) ; (3) ;(5) ,求,; (7) 。解:(1) ;(3) ;(5) ,(7) 因为,所以,即时,;时,;时,;时,;时,;时,习题2:3、下列函数在何处可导?何处解析?在可导点求出其导数(2) ; (4) (6) 。解:(2) 因为,这四个一阶偏导数都连续,故和处处可微,但柯西-黎曼方程仅在上成立,所以只在直线上可导,此时,但复平面上处处不解析(4) 因为,这四个一阶偏导数都连续,故和处处可微,且满足柯西-黎曼方程,所以在复平面内解析,并且 (6) 所以,在除外处处解析,且4、指出下列函数的奇点(1) ; (2) 解:(1)

2、所以,的奇点为0,(2) 所以,的奇点为,10、如果在区域内解析,并且满足下列条件之一,试证在内是一常数(2) 在内解析;证明:由在区域内解析,知、在区域内可微,且,同理,由在内解析,知,从而我们得到,所以、皆为常数,故在内是一常数15、求解下列方程:(2) 解:,于是18、求,的值及主值解:,所以其主值为;,所以其主值为19、求,的值解:;20、求,的值解:;22、解方程:(1) ;解:,习题3:1、沿下列路径计算积分:(1) 从原点至的直线段;(2) 从原点沿实轴至2,再由2铅直向上至;(3) 从原点沿虚轴至,再由沿水平方向向右至解:(1) 从原点至的直线段的复参数方程为,参数,所以(2)

3、 从原点沿实轴至2的直线段的复参数方程为,参数,由2铅直向上至的直线段的复参数方程为,参数,所以(3) 从原点沿虚轴至的直线段的复参数方程为,参数,由沿水平方向向右至的复参数方程为,参数,所以2、分别沿与算出积分的值解:的复参数方程为,参数所以;的复参数方程为,参数所以5、计算积分的值,其中为正向圆周:(1) 解:设是内以被积函数的奇点为圆心的正向圆周,那么6、试用观察法得出下列积分的值,并说明观察时所依据的是什么?是正向圆周:(1) ; (2) ; (3) ;(4) ; (5) ; (6) 解:(1) ,根据柯西积分定理;(2) ,根据柯西积分定理;(3) ,根据柯西积分定理;(4) ,根据

4、复合闭路定理;(5) ,根据柯西积分定理;(6) ,根据柯西积分定理及复合闭路定理7、沿指定曲线的正向计算下列积分:(1) ,;(2) ,;(3) ,;(4) ,;(5) ,;(6) ,为包围的闭曲线;(7) ,;(8) ,;(9) ,;(10) ,解:(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8) ;(9) ;(10) 21、证明:和都是调和函数,但是不是解析函数证明:因为,所以,且,即和都是调和函数,但是不是解析函数22、由下列各已知调和函数求解析函数,并写出的表达式:(1) ;(2) ,;(3) ,解:(1) 因为是调和函数,所以,于是那么,则,所以,(2)

5、 ,因为是调和函数,所以,从而由知,所以(3) 因为是调和函数,所以,于是那么,则,所以,由知,所以习题4:1、下列数列是否收敛?若收敛,求其极限(1) ; (2) ; (3) ; (4) 解:(1) ,当时,实部,虚部,所以收敛于(2) ,当时,那么,所以收敛于0(3) 当时,实部是发散的,所以发散(4) ,实部和虚部都发散,所以发散2、判断下列级数的收敛性与绝对收敛性:(1) ; (3) 解:(1) 记,则当时,那么不趋近于0,所以级数发散(3) 收敛,即级数绝对收敛,所以收敛7、将下列各函数展成的幂级数,并指出它们的收敛半径(1) ; (3) 解:(1) 因为,所以收敛半径(3) 因为,

6、所以收敛半径8、将下列各函数在指定点处展成泰勒级数,并指出它们的收敛半径(3) ,; (4) ,; (6) ,解:(3) ,则因为,所以收敛半径(4) ,则因为,所以收敛半径(6) 因为,所以收敛半径10、求下列各函数在指定圆环域的洛朗级数展开式:(2) ,;(5) ,在以为中心的圆环域内;(7) ,解:(2) 在内,由于,且,所以,从而在内,由于,所以,从而(5) 当时,由于,且,所以,从而当时,由于,所以,且,从而,所以(7) 由于且,所以习题5:1、求下列函数的孤立奇点并确定它们的类别,若是极点,指出它们的级(1) ; (3) ; (4) ; (7) ; (11) 解:(1) 易见,是的

7、孤立奇点由于,所以,是极点,一级极点,二级极点(3) ,所以是极点,二级极点(4) 易见是的孤立奇点,且,所以是可去奇点;(7) ,三级极点,一级极点;(11) ,本性奇点5、求下列各函数在有限奇点处的留数(2) ; (3) ; (6) 解:(2) 记,则易见,是的孤立奇点,且他们都是一级极点由规则,(3) 记,则有二级极点由规则,(6) 记,则有本性奇点因为在的去心邻域内的洛朗级数为于是有其中的项的系数,所以6、利用留数定理计算下列积分(1) ,为圆周解:被积函数在圆周的内部有一级极点和二级极点,由留数的计算规则、得,于是由留数定理得积分值(2) 解:被积函数在内有一个二级极点,由留数的计算

8、规则得于是由留数定理得积分值(4) 解:被积函数在内有可去奇点,则,所以由留数定理知(6) 解:被积函数在内有一个二级极点,由留数的计算规则得于是由留数定理得积分值9、(1) 解:令,则,于是被积函数在内有一个一级极点,其留数所以(5) 解:是偶函数,而在上半平面内有一级极点和,且,所以待添加的隐藏文字内容3(6) 解:,且在实轴上无孤立奇点,故积分存在,所求积分是它的实部函数在上半平面有两个一级极点和,而且,从而所以习题8:4、试求的傅氏变换解:的傅里叶变化为5、试求矩形脉冲的傅氏变换解:的傅里叶变化为6、求下列函数的傅氏积分:(1) 解:是上的奇函数,则,于是7、求函数的傅氏积分,并计算解

9、:是上的偶函数,则,于是10、求符号函数的傅氏变换(提示:)解:方法一:方法二:11、求函数的傅氏变换解:,则15、利用位移性质计算下列函数的傅氏变换:(1) ;(2) 解:(1) ;(2) 23、求下列函数的傅氏变换:(2) ;(3) ;(4) 解:(2) 记,由卷积定理有(3) 记,由卷积定理有(4) 记,由卷积定理有习题9:2、求下列函数的拉氏变换:(1) (3) .解:(1) (3) 3、求下列周期函数的拉氏变换:(1) 以为周期且在一个周期内的表达式为解:4、求下列函数的拉氏变换:(1) ;(2) ;(3) ;(6) (为实常数);(9) ;(10) ;(11) 解:(1) (2)

10、(3) ;(6) ,则由位移性质有;(9) ,则;(10) ,则,从而;(11) ,则一条只有两条前肢的拳师犬不愿让残疾成为前进的障碍,他同其他四条腿的伙伴们一同在海滩上尽情狂奔。In an adorable video showing his first trip to the beach, Duncan Lou Who can been seen excitedly galloping along the sand and paddling in the water.这段可爱的视频展现了名叫Duncan Lou Who的狗第一次来到海边的场景,他兴奋地在沙滩上飞奔、或是趟水嬉戏。His e

11、xciting day trip was filmed by Panda Paws Rescue, a Washington state-based charity that cares for Duncan and other dogs with special needs.这段视频由位于华盛顿州的慈善组织Panda Paws Rescue拍摄,该组织专门照料Duncan以及其他有特殊需求的狗。Despite only having front limbs, the boxer is able to not only balance, but also run really fast and

12、 play with the other dogs that joined him for the outing.虽然只有两条前肢,Duncan不仅能让自己保持平衡,还能快速奔跑,和其余同他一起远足的狗 狗玩耍。He was born with deformed back legs, which were later removed to make the dog more comfortable. Duncan出生时,它的后肢就是畸形的,此后为了让他舒服些,只能进行截肢。His owners, who posted the video on YouTube, said he has a wh

13、eelchair but doesnt like to use it.主人们将视频传到了YouTube上,他们说有一把供Duncan使用的轮椅,但是他并不爱用。We let him be free and just walk on his two legs. There is some slow motion in this video, but none of the video has been sped up, this gives you an idea of how fast Duncan really it, his owners said. “我们让他自由地用两条腿行走。视频中有

14、些特意制作的慢镜头,但是没有任何一处做过加速处理,你们可以通过视频感受到Duncan跑得有多快。”主人们说。The thrill of running through the surf was clear to see, as Duncan raced people and dogs across the sand, with his tail wagging excitedly. Duncan踏着浪花,在沙滩上同其他人及狗赛跑,还兴奋地摇着尾巴,他的喜悦之情显而易见。Duncans owners have described him as a trooper, adding on chari

15、tys Facebook page: Hes happy, healthy and as far as he knows, normal too.主人们用“骑兵”一词来形容Duncan,他们在组织的Facebook中写道:“他很快乐,也很健康;而且在他自己看来,他是条正常的狗。”It would be the best if he had four legs, of course, but his body wasnt built to have back legs and thats OK. He and we have just adapted. “他如果能有四条腿当然最好,但是他天生就失

16、去了后肢,这也没什么关系,无论是他还是我们都已经适应了这一点。” Im thankful to PSG for giving me the opportunity to continue but I feel now is the right time to finish my career, playing at the highest level. If you had told me as a young boy I would have played for and won trophies with my boyhood club Manchester United, proudly

17、 captained and played for my country over one hundred times and lined up for some of the biggest clubs in the world, I would have told you it was a fantasy. Im fortunate to have realised those dreams.To this day, one of my proudest achievements is captaining my country. I knew every time I wore the

18、Three Lions shirt, I was not only following in a long line of great players, I was also representing every fan that cared passionately about their country. I am honoured to represent England both on and off the pitch.I wouldnt have achieved what I have done today without my family. Im grateful for m

19、y parents sacrifice, which made me realise my dreams. I owe everything to Victoria and the kids, who have given me the inspiration and support to play at the highest level for such a long period. I also want to thank Simon Fuller and his team for their continued support. I want to thank all my team-

20、mates, the great managers that I had the pleasure of learning from. I also want to thank the fans who have all supported me and given me the strength to succeed. Nothing will ever completely replace playing the game I love, however I feel like Im starting a new adventure and Im genuinely excited about what lies ahead. Im fortunate to have been given many opportunities throughout my career and now I feel its my time to give back.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号