等价无穷小量替换定理的推广本科毕业论文.doc

上传人:文库蛋蛋多 文档编号:4195120 上传时间:2023-04-09 格式:DOC 页数:29 大小:1.53MB
返回 下载 相关 举报
等价无穷小量替换定理的推广本科毕业论文.doc_第1页
第1页 / 共29页
等价无穷小量替换定理的推广本科毕业论文.doc_第2页
第2页 / 共29页
等价无穷小量替换定理的推广本科毕业论文.doc_第3页
第3页 / 共29页
等价无穷小量替换定理的推广本科毕业论文.doc_第4页
第4页 / 共29页
等价无穷小量替换定理的推广本科毕业论文.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《等价无穷小量替换定理的推广本科毕业论文.doc》由会员分享,可在线阅读,更多相关《等价无穷小量替换定理的推广本科毕业论文.doc(29页珍藏版)》请在三一办公上搜索。

1、 文理学院College of Arts and Science of Hubei Normal University学士学位论文Bachelors Thesis论文题目等价无穷小量替换定理的推广作者姓名指导教师所在院系专业名称完成时间毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并

2、表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出

3、重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日湖北师范学院文理学院学士学位论文(设计)诚信承诺书中文题目: 等价无穷小量替换定理的推广外文题目:General

4、ization of the Equivalent Infinitesimal Substitution Theorem学生姓名学 号院系专业文理学院数学系班 级学 生 承 诺我承诺在毕业论文(设计)活动中遵守学校有关规定,恪守学术规范,本人毕业论文(设计)内容除特别注明和引用外,均为本人观点,不存在剽窃、抄袭他人学术成果,伪造、篡改实验数据的情况.如有违规行为,我愿承担一切责任,接受学校的处理. 学生(签名):年 月 日指导教师承诺我承诺在指导学生毕业论文(设计)活动中遵守学校有关规定,恪守学术规范,经过本人核查,该生毕业论文(设计)内容除特别注明和引用外,均为该生本人观点,不存在剽窃、抄袭

5、他人学术成果,伪造、篡改实验数据的现象. 指导教师(签名): 年 月 日目录1引言12无穷小量以及等价无穷小量23等价无穷小量替换定理34等价无穷小量替换定理的推广44.1 有限个函数积或商运算的等价无穷小量替换44.2 在极限式中有加或减运算的等价无穷小量替换54.3 乘方运算下的等价无穷小量替换84.4 变上限定积分函数的等价无穷小量替换125应用举例146结束语207参考文献21等价无穷小量替换定理的推广朱泽飞(指导老师:张金娥)(湖北师范学院文理学院 中国 黄石 435002)摘要: 等价无穷小量替换是计算极限的一种重要方法.在目前流行使用的许多版本的数学分析教材中,只给出了两个无穷小

6、量积与商形式的等价无穷小量替换定理.然而该定理只适用于两个无穷小量积与商的形式,这对于其它形式例如:有限个无穷小量积与商;两个以及有限个无穷小量之和与差;形如的幂指函数以及被积函数是无穷小量的变限积分,该定理就不适用了.本文把用等价无穷小量替换定理求两个无穷小量积与商的极限形式进行了推广,从而扩大了该定理的使用范围,使得应用更加灵活方便.关键词:无穷小量;等价无穷小量;极限;推广定理.分类号:O17Generalization of the Equivalent Infinitesimal Substitution TheoremZHU Zefei (Tutor: ZHANG Jine)(Co

7、llege of Arts & Science of Hubei Normal University, Huangshi, 435002, China)Abstract: The equivalent infinitesimal substitution is an important method in calculating limit. At present, in many versions of the popular use of mathematical analysis textbook, it only gives two infinitesimal product and

8、quotient in the form of equivalent infinitesimal substitution theorem. whereas the theorem only applies to the two infinitesimal product and quotients form, which in regard to other forms , for example: a finite infinitesimal product and quotient; two and the finite infinitesimal sum and difference;

9、 like the exponential function of .besides, the integrand is infinitesimal variable-ranged integral, the theorem is not applicable. In this thesis, by using the equivalent infinitesimal substitution theorem for solving two infinitesimal product and quotients limit form of the generalization, it expa

10、nds the scope of application of the theorem, leading to more flexible and convenient application. Key words: Infinitesimal; equivalent infinitesimal; limit; generalized theorem.等价无穷小量替换定理的推广朱泽飞(指导老师:张金娥)(湖北师范学院文理学院 中国 黄石435002)1引言在数学分析中,求函数的极限是最基本的问题之一,也是数学分析学习的重点.在这些求极限的问题中,最不好掌握的便是型这类不定式的极限,一般见到这一

11、类型的问题,最容易想到的便是洛比达法则.事实上,洛必达法则也不是万能的,一些问题可能会越用越复杂,并且出现循环,求不出结果.例如一个求极限问题,它是一个型的不定式极限.用洛比达法则求解如下,原式,出现了循环,此时用洛必达法则求不出结果.怎么办?用等价无穷小量来替换,原式,由此可见洛必达法则并不是万能的,也不一定是最佳的,它的使用也具有局限性.在这里我们看到了等价无穷小量有着无可比拟的作用,用等价无穷小量来替换能够很快地求出结果.等价无穷小量替换是计算极限的一种重要方法,然而在目前流行使用的许多版本的数学分析教材中,一般只给出了两个无穷小量积和商的形式等价无穷小量替换定理,接着就强调:只有对所求

12、的极限式中相乘或相除的因式才能用等价无穷小量来替换,而对极限式中的相加或相减的部分则不能随意替换.注意在这里,我们自然就有一个疑问,不能随意替换是不是在有些情况下可以替换?那么在什么情况下可以替换呢?对于求不定式极限形式的幂指函数各位置上的无穷小量情况,还有在求变上限积分中的被积函数为无穷小量时的情形,求极限时能否用等价无穷小量来替换呢?在文献2中并没有作详细的论述,这不得不说是一种遗憾.本文所得到的结果是对等价无穷小量替换定理的进一步丰富与完善,也是对文献2中的等价无穷小量替换定理的改进和推广.在叙述本文的结果之前,首先要说明一下,本文的所有结论都是以的极限形式为代表来叙述并证明的.事实上,

13、本文的结论对于其它所有的极限过程都成立,至于其它类型极限的定理及其证明,只要相应地作些修改即可.2无穷小量以及等价无穷小量定义 设在某内有定义.若,则称为当时的无穷小量. 类似的定义当时的无穷小量.定义 设当时,与均为无穷小量,若,则称与是当时的等价无穷小量.记作. 不难看出等价无穷小量是等价关系,具有如下性质:性质1 设函数在内有定义,且,.反身性:;对称性:若,则;传递性:若,则.证 . 3等价无穷小量替换定理定理 设函数在内有定义,且有若则若则注3.1 定理1称为“等价无穷小量替换定理”(证明见参考文献2),说明了在对所求极限式中相乘或相除的因式可用等价无穷小量来替换.注3.2 应用等价

14、无穷小量替换,必须记住一些常用的等价无穷小量.当时,常见的等价无穷小量有:上面所列的等价无穷小量可用洛必达法则直接证明(证明从略).注3.3 在利用等价无穷小量替换时,还要记住一些极限公式,如两个重要极限和等.4 等价无穷小量替换定理的推广4.1 有限个函数积或商运算的等价无穷小量替换定理2 设函数在内有定义,且有.若则;若则.证 对用数学归纳法证之.当时,由定理1可知,明题成立;假设当时命题成立,即“若则”成立,则当时,只要能证明“若则”成立即可.而这就证明了当时,若则是成立的.综上可知命题成立. 命题的证明与命题的证明相仿,在此从略.注4.1.1 定理2中的均可以为有限实数,也可以为或.注

15、4.1.2 定理2显然是定理1的直接推广.说明了有限个函数积或商的极限若存在(或,),则其中全部或部分无穷小量可用其等价无穷小量来替换. 注4.1.3 定理2在使用上把定理1局限于两个无穷小量积或商的极限替换,扩大到任意有限个无穷小量积或商的极限情形,从而大大拓展了使用范围.4.2 在极限式中有加或减运算的等价无穷小量替换实际上,对极限式中的两个无穷小量相加的部分是可以使用等价无穷小量来替换的,只不过它有自身的一些限制,若要进行替换,必须满足如下定理3:定理3 设函数在内有定义,且.若则(可以是有限实数或).证 当为有限实数时当时,即从而 当时,证法同综上所述,定理3成立.注4.2.1 定理3

16、说明了在求极限时,若某个因子是两个无穷小量的和时,只要这两个无穷小量满足定理3中的条件,则这个因子就可以用相应的等价无穷小量之和来替换.注4.2.2 在定理3的条件中若,则结论不真(求这类等价无穷小量之和的运算问题,可以利用泰勒公式,亦可用洛必达法则结合其它方法来求解).由定理3可导出对极限式中的两个无穷小量相减的因子使用等价无穷小量替换的条件,若要进行替换,必须满足如下推论1:推论1 设函在内有定义,且有.若则(可以是有限实数或).推论1的证明与定理3的证明相仿,在此从略. 注4.2.3 推论1说明了在求极限时,若某个因子是两个无穷小量的差时,只要这两个无穷小量满足推论1中的条件,则这个因子

17、就可以用相应的等价无穷小量之差来替换.注4.2.4 在推论1的条件中若,则结论不真(求这类等价无穷小量之差的运算问题,可以利用泰勒公式,亦可用洛必达法则结合其它方法来求解).推论2 设函数在内有定义,且(可以是有限实数或),则.证 对用数学归纳法证之. 当时,由定理3可知,结论成立;假设时结论成立,即有成立,那么当时, 由 可知即有所以当时,结论也成立.综上可知,对都有.注4.2.5 显然推论2是定理3的直接推广.在使用上把定理3中局限于两个无穷小量和的极限替换,扩大到任意有限个无穷小量和的极限替换情形,从而大大拓展了适用范围.注4.2.6 在推论2中当中的一部分无穷小量前面用减号相连接时,此

18、时可以把这一部分无穷小量改写为加上这个无穷小量的相反数,使得这部分无穷小量前面均用加号相连接,这时只要满足推论2的条件则仍然有成立.注4.2.7 在推论2的条件中若,则结论不真(求这类等价无穷小量的代数和的运算问题,可以利用泰勒公式,亦可用洛必达法则结合其它方法来求解).4.3 乘方运算下的等价无穷小量替换在利用等价无穷小量替换定理求函数极限的过程中,常常会碰到一类不定式极限的问题,对于这些幂指函数的情形现对其作进一步的探究.作为准备,先证引理1引理 设函数在内有定义,且有则证 次证引理2 引理 设函数在内有定义,且有则.证 由对数函数的连续性及重要极限可知从而有同理 又由性质1的等价无穷小量

19、的“传递性”和“对称性”可知有.再证引理3引理3 设函数在内有定义,且有. 若则;若则.证 (由定理1)(由引理1)注4.3.1 引理3说明了对于幂指函数中的底数和指数中的无穷小量均可用其等价无穷小量来替换.由此来证明定理4 设函数在内有定义,且有.若则(它是型);若则(它是型);若则(它是型).证 由引理3可知(由引理3)(由引理1) (由定理1和引理2)注4.3.2 定理4说明了在求幂指函数不定式的极限时,可以同时直接地对指数,底数中的无穷小量应用等价无穷小量来替换.注4.3.3 对于求型不定式极限,当底为,指数为时,和可分别用其等价无穷小量来替换.注4.3.4 均可以为有限实数,也可以为

20、或.对于定理4中的命题为了计算上的方便,现证明一个重要的性质.性质2 若.则.证 4.4 变上限定积分函数的等价无穷小量替换在求解不定式极限时,常常会遇到一种含有变限积分函数的不定式极限,通常是型或型,一般地用洛必达法则及变限积分的性质来去掉积分号,但是在用此方法求解比较复杂的函数时,因需多次求导,计算繁琐且易出错.事实上,对于此类型的求极限问题,当满足一定的条件时,可以根据以下定理来求解.定理5 设且与在上连续,则有证 由“微积分学基本定理”和“洛必达法则”可知 从而注4.4.1 由定理5可得常用的变上限定积分的等价无穷小量有:当时, ; .注4.4.2 利用定理5在求解有关变上限的定积分时

21、,若被积函数满足此定理的条件,则被积函数可用它的等价无穷小量来替换,替换后可使问题转化为简单易求的极限形式.当变上限的定积分中的上限由自变量变为函数时,被积函数能否再用其等价无穷小量替换来求解极限呢?事实上,当满足一定的条件时答案是肯定的.定理6 设为连续函数,为可导函数,且可行复合与.若,则证 由“微积分学基本定理” ,“洛必达法则”和“复合函数的极限运算法则”可得所以有5应用举例例1 求 解 由定理1的注3.2可知 当时, ; 由定理2可得 原式 . 例2 求 解 原式(由定理1) (令)例3 求 解 当时,; 由定理3可知 原式 . 令则当时, 原式而当时,; 而 由定理3的推论1可知

22、原式.例4 求解 又 由定理3的推论2可知: 原式.例5 求; ; ;解 这是个型不定式极限,当时,而(由定理1的注3.3)由定理3和定理4的命题可知原式 它是型不定式极限,由定理4的命题可知原式(令) 它是型不定式极限,由定理4的命题可知原式例6 求解 原式(由定理4的命题)(由性质2)注5.1 在求解型不定式极限时,运用定理4的命题并且结合性质2可减少计算量起到简化的作用.但并不是所有的型不定式极限都要化为的形式,在使用中要综合分析,选择适当而简单的方法.例7 求解 由定理5可知当时,有 原式例8 求解 当时,; ;.满足定理6的条件,从而由定理6可得原式注5.2 上面的8个例题若改用洛必

23、达法则来求解,因需多次求导,并且求导的过程十分繁琐,很难求出结果.再一次说明了洛必达法则并不是万能的,也不一定是最佳的方法.使用本文中推广后的等价无穷小量替换定理则只需几步即可求出结果,且不易出错.只要充分的掌握好洛必达法则和等价无穷小量的性质,再把本文中的这些定理结合起来,会使这些原来十分复杂的求极限问题变得非常简单.6 结束语本文把文献2中只适用于求两个无穷小量积或商极限形式的等价无穷小量替换定理推广到:有限个无穷小量积与商;两个以及有限个无穷小量之和与差;形如的幂指函数以及被积函数是无穷小量的变限积分的极限形式中.不仅扩大了该定理的适用范围,而且把该定理进行了丰富与完善,使得在应用上更加

24、灵活方便.7参考文献1魏晓娜,李曼生.等价无穷小的应用研究J.数学教学研究,2010,29(10):5961.2华东师范大学数学系.数学分析(上册)M.第三版.北京:高等教育出版社,2001:5657,59,6162.3同济大学数学系.高等数学(上册)M.第六版.北京:高等教育出版社,2007:60.4钱吉林等.数学分析题解精粹M.第二版.武汉:崇文书局,2009:85.5同济大学数学系.高等数学(上册)M.第四版.北京:高等教育出版社,1996:56.6储亚伟,刘敏.等价无穷小在极限运算中的应用J.阜阳师范学院学报,2005,22(3):7172.7任全红.等价无穷小量代换求函数极限的应用J

25、.数学教学与研究,2009,上卷(40):81.8裴礼文.数学分析中的典型问题与方法M.第二版.北京:高等教育出版社,2006:36.9屈红萍.等价无穷小代换求极限的方法推广J.保山学院学报,2011,(2):5657.8 致谢光阴似箭,日月如梭,在毕业论文定稿之际,我的大学四年本科生活也即将画上了句号.遥想初入湖北师范学院文理学院之时,还历历在目,恍如隔日,不免感叹时光易逝,韶华难追.然而,艰辛而快乐的求学之路,也给我留下了很多难以忘怀的欣慰和幸福.在此,向四年来陪伴我一起走过,给予我无私帮助和关心的老师、朋友以及亲人们致以最为诚挚的感谢!首先,我要衷心的感谢我的指导老师张金娥,她在我毕业论

26、文设计的题目选择上给予了非常大的帮助,并且在整个论文设计的过程中一直指导、鼓励着我,使我能够顺利地完成毕业论文的设计工作.也要感谢吴爱龙老师,他在我的论文设计中,提出了许多中肯而宝贵的意见,他不惮其烦,为我复审修改了全部稿件,使稿件得到了很大的改进,我对他的这种负责精神表示敬佩和学习.同时也要感谢我前文所引用或参考的文献作者们,没有他们的前期工作,也就没有我现在的论文设计.其次,感谢0901班,感谢数学与统计学院,感谢湖北师范学院,能够在这样的集体和环境中度过我的本科学习生涯,是我一生中最宝贵的财富.同时,也要感谢我的班主任黄华平老师,感谢他这四年来在生活和学习上对我无微不至的关怀与帮助.最后

27、我要感谢的是我最亲爱的父母和其他家人.在我二十多年的成长过程中,你们无时不刻无私的关怀和奉献,是我独在他乡求学的最大精神支柱,也是我可以依偎的最温馨的港湾,你们是我永远的牵挂和眷念!在此,也向尊敬的答辩委员会的各位老师致以我诚挚的感谢,你们辛苦了,感谢各位评委耐心地审阅我的论文,感谢各位评委老师给予我的指导和帮助.湖北师范学院文理学院学士学位论文(设计)评审表所在院系文理学院学生姓名朱泽飞导师姓名张金娥所学专业数学与应用数学学生学号2009311010107导师职称助教论文题目等价无穷小量替换定理的推广论文主要内容简介等价无穷小量替换是计算极限的一种重要方法.在目前流行使用的许多版本的数学分析教材中,只给出了两个无穷小量积与商的形式等价无穷小量替换定理.然而该定理只适用于两个无穷小量积与商的形式,这对于其它形式例如:有限个无穷小量积与商;两个以及有限个无穷小量之和与差;形如的幂指函数以及被积函数是无穷小量的变限积分,该定理就不适用了.这样该定理的适用范围就有局限性了.本文把用等价无穷小量替换定理求两个无穷小量积与商的极限形式进行了推广,从而扩大了该定理的使用范围,使得应用更加灵活方便.论文评语(对论文撰写的整体评价,并建议评定成绩)论文总评成绩院系学术委员会主席(签名或盖章):_ 院系盖章: 注:本表将装订在论文正文后面,务必认真填写.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号