《北京市高三综合能力测试(二)文科数学试题及答案.doc》由会员分享,可在线阅读,更多相关《北京市高三综合能力测试(二)文科数学试题及答案.doc(10页珍藏版)》请在三一办公上搜索。
1、北京市2014-2015学年高三年级综合能力测试(二)数学(文科)一、选择题(本大题共8小题,每小题5分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数( )A B C D2、已知集合,则( )A B C D3、若,且,则角的终边所在象限为( )A第一象限 B第二象限 C第三象限 D第四象限4、2001年至2013年北京市电影放映场次的情况如右图所示下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是( )A BC D5、执行如图所示的程序框图,那么输出的的值为( )A B C D6、已知直线和直线,则“”是“”的( )A充分不必要条件 B必要不充分条
2、件C充要条件 D既不充分也不必要条件7、已知等比数列的公比,则下面说法中不正确的是( )A是等比数列 B对于,C对于,都有 D若,则对于任意,都有8、某四棱柱的三视图如图所示,该几何体的各面中互相垂直的面的对数是( )A BC D二、填空题(本大题共6小题,每小题5分,共30分)9、抛物线的准线方程为 10、已知,则 ,函数的值域为 11、已知向量,是夹角为的单位向量,则向量与向量的夹角是 12、在中,则 13、假设某商店只有每盒10支装的铅笔和每盒7支装的铅笔两种包装类型学生打算购买2015支铅笔,不能拆盒,则满足学生要求的方案中,购买的两种包装的总盒数的最小值是 ,满足要求的所有购买方案的
3、总数为 14、已知函数(其中)经过不等式组所表示的平面区域,则实数的取值范围是 三、解答题(本大题共6小题,满分80分解答应写出文字说明、证明过程或演算步骤)15、(本小题满分13分)已知()的部分图象如图所示写出的最小正周期及,的值;求在上的取值范围16、(本小题满分13分)下图为北京市2001年到2013年人均生活用水量和常住人口的情况:比较前6年与后7年人均生活用水量的平均值的大小;(不要求计算过程)若从这13年中随机选择连续的三年进行观察,求所选的这三年的人均用水量恰是依次递减的概率;由图判断从哪年开始连续四年的常住人口的方差最大?并结合两幅图表推断北京市在2010至2013四年间的总生活用水量的增减情况(结论不要求证明)17、(本小题满分14分)已知三棱柱若三棱锥的体积为,写出三棱柱的体积;(不要求过程)若,分别是线段,的中点,求证:平面;若,且,求证:平面底面18、(本小题满分13分)已知函数若直线与在处相切,求实数,的值;若在定义域上单调递增,求实数的取值范围19、(本小题满分14分)已知椭圆过点,且其右顶点与椭圆的右焦点重合求椭圆的标准方程;设为原点,若点在椭圆上,点在椭圆上,且,求证:20、(本小题满分13分)已知整数数集(,)具有性质:对任意,(),请举出一个满足上述条件且含有5个元素的数集;求证:,是等差数列;已知,且,求数集中所有元素的和的最小值